1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
use std::cmp;
use std::collections::{BTreeSet, VecDeque};
use std::fmt;
use std::mem::size_of;
use std::ops::{Index, IndexMut};

use ahocorasick::MatchKind;
use automaton::Automaton;
use classes::{ByteClassBuilder, ByteClasses};
use error::Result;
use prefilter::{self, opposite_ascii_case, Prefilter, PrefilterObj};
use state_id::{dead_id, fail_id, usize_to_state_id, StateID};
use Match;

/// The identifier for a pattern, which is simply the position of the pattern
/// in the sequence of patterns given by the caller.
pub type PatternID = usize;

/// The length of a pattern, in bytes.
pub type PatternLength = usize;

/// An Aho-Corasick automaton, represented as an NFA.
///
/// This is the classical formulation of Aho-Corasick, which involves building
/// up a prefix trie of a given set of patterns, and then wiring up failure
/// transitions between states in order to guarantee linear time matching. The
/// standard formulation is, technically, an NFA because of these failure
/// transitions. That is, one can see them as enabling the automaton to be in
/// multiple states at once. Indeed, during search, it is possible to check
/// the transitions on multiple states for a single input byte.
///
/// This particular implementation not only supports the standard style of
/// matching, but also provides a mode for choosing leftmost-first or
/// leftmost-longest match semantics. When a leftmost mode is chosen, some
/// failure transitions that would otherwise be added are elided. See
/// the documentation of `MatchKind` for more details and examples on how the
/// match semantics may differ.
///
/// If one wants a DFA, then it is necessary to first build an NFA and convert
/// it into a DFA. Note, however, that because we've constrained ourselves to
/// matching literal patterns, this does not need to use subset construction
/// for determinization. Instead, the DFA has at most a number of states
/// equivalent to the number of NFA states. The only real difference between
/// them is that all failure transitions are followed and pre-computed. This
/// uses much more memory, but also executes searches more quickly.
#[derive(Clone)]
pub struct NFA<S> {
    /// The match semantics built into this NFA.
    match_kind: MatchKind,
    /// The start state id as an index into `states`.
    start_id: S,
    /// The length, in bytes, of the longest pattern in this automaton. This
    /// information is useful for keeping correct buffer sizes when searching
    /// on streams.
    max_pattern_len: usize,
    /// The total number of patterns added to this automaton, including
    /// patterns that may never be matched.
    pattern_count: usize,
    /// The number of bytes of heap used by this NFA's transition table.
    heap_bytes: usize,
    /// A prefilter for quickly skipping to candidate matches, if pertinent.
    prefilter: Option<PrefilterObj>,
    /// Whether this automaton anchors all matches to the start of input.
    anchored: bool,
    /// A set of equivalence classes in terms of bytes. We compute this while
    /// building the NFA, but don't use it in the NFA's states. Instead, we
    /// use this for building the DFA. We store it on the NFA since it's easy
    /// to compute while visiting the the patterns.
    byte_classes: ByteClasses,
    /// A set of states. Each state defines its own transitions, a fail
    /// transition and a set of indices corresponding to matches.
    ///
    /// The first state is always the fail state, which is used only as a
    /// sentinel. Namely, in the final NFA, no transition into the fail state
    /// exists. (Well, they do, but they aren't followed. Instead, the state's
    /// failure transition is followed.)
    ///
    /// The second state (index 1) is always the dead state. Dead states are
    /// in every automaton, but only used when leftmost-{first,longest} match
    /// semantics are enabled. Specifically, they instruct search to stop
    /// at specific points in order to report the correct match location. In
    /// the standard Aho-Corasick construction, there are no transitions to
    /// the dead state.
    ///
    /// The third state (index 2) is generally intended to be the starting or
    /// "root" state.
    states: Vec<State<S>>,
}

impl<S: StateID> NFA<S> {
    /// Returns the equivalence classes of bytes found while constructing
    /// this NFA.
    ///
    /// Note that the NFA doesn't actually make use of these equivalence
    /// classes. Instead, these are useful for building the DFA when desired.
    pub fn byte_classes(&self) -> &ByteClasses {
        &self.byte_classes
    }

    /// Returns a prefilter, if one exists.
    pub fn prefilter_obj(&self) -> Option<&PrefilterObj> {
        self.prefilter.as_ref()
    }

    /// Returns the total number of heap bytes used by this NFA's transition
    /// table.
    pub fn heap_bytes(&self) -> usize {
        self.heap_bytes
            + self.prefilter.as_ref().map_or(0, |p| p.as_ref().heap_bytes())
    }

    /// Return the length of the longest pattern in this automaton.
    pub fn max_pattern_len(&self) -> usize {
        self.max_pattern_len
    }

    /// Return the total number of patterns added to this automaton.
    pub fn pattern_count(&self) -> usize {
        self.pattern_count
    }

    /// Returns the total number of states in this NFA.
    pub fn state_len(&self) -> usize {
        self.states.len()
    }

    /// Returns the matches for the given state.
    pub fn matches(&self, id: S) -> &[(PatternID, PatternLength)] {
        &self.states[id.to_usize()].matches
    }

    /// Returns an iterator over all transitions in the given state according
    /// to the given equivalence classes, including transitions to `fail_id()`.
    /// The number of transitions returned is always equivalent to the number
    /// of equivalence classes.
    pub fn iter_all_transitions<F: FnMut(u8, S)>(
        &self,
        byte_classes: &ByteClasses,
        id: S,
        f: F,
    ) {
        self.states[id.to_usize()].trans.iter_all(byte_classes, f);
    }

    /// Returns the failure transition for the given state.
    pub fn failure_transition(&self, id: S) -> S {
        self.states[id.to_usize()].fail
    }

    /// Returns the next state for the given state and input byte.
    ///
    /// Note that this does not follow failure transitions. As such, the id
    /// returned may be `fail_id`.
    pub fn next_state(&self, current: S, input: u8) -> S {
        self.states[current.to_usize()].next_state(input)
    }

    fn state(&self, id: S) -> &State<S> {
        &self.states[id.to_usize()]
    }

    fn state_mut(&mut self, id: S) -> &mut State<S> {
        &mut self.states[id.to_usize()]
    }

    fn start(&self) -> &State<S> {
        self.state(self.start_id)
    }

    fn start_mut(&mut self) -> &mut State<S> {
        let id = self.start_id;
        self.state_mut(id)
    }

    fn iter_transitions_mut(&mut self, id: S) -> IterTransitionsMut<S> {
        IterTransitionsMut::new(self, id)
    }

    fn copy_matches(&mut self, src: S, dst: S) {
        let (src, dst) =
            get_two_mut(&mut self.states, src.to_usize(), dst.to_usize());
        dst.matches.extend_from_slice(&src.matches);
    }

    fn copy_empty_matches(&mut self, dst: S) {
        let start_id = self.start_id;
        self.copy_matches(start_id, dst);
    }

    fn add_dense_state(&mut self, depth: usize) -> Result<S> {
        let trans = Transitions::Dense(Dense::new());
        let id = usize_to_state_id(self.states.len())?;
        self.states.push(State {
            trans,
            // Anchored automatons do not have any failure transitions.
            fail: if self.anchored { dead_id() } else { self.start_id },
            depth: depth,
            matches: vec![],
        });
        Ok(id)
    }

    fn add_sparse_state(&mut self, depth: usize) -> Result<S> {
        let trans = Transitions::Sparse(vec![]);
        let id = usize_to_state_id(self.states.len())?;
        self.states.push(State {
            trans,
            // Anchored automatons do not have any failure transitions.
            fail: if self.anchored { dead_id() } else { self.start_id },
            depth: depth,
            matches: vec![],
        });
        Ok(id)
    }
}

impl<S: StateID> Automaton for NFA<S> {
    type ID = S;

    fn match_kind(&self) -> &MatchKind {
        &self.match_kind
    }

    fn anchored(&self) -> bool {
        self.anchored
    }

    fn prefilter(&self) -> Option<&dyn Prefilter> {
        self.prefilter.as_ref().map(|p| p.as_ref())
    }

    fn start_state(&self) -> S {
        self.start_id
    }

    fn is_valid(&self, id: S) -> bool {
        id.to_usize() < self.states.len()
    }

    fn is_match_state(&self, id: S) -> bool {
        self.states[id.to_usize()].is_match()
    }

    fn get_match(
        &self,
        id: S,
        match_index: usize,
        end: usize,
    ) -> Option<Match> {
        let state = match self.states.get(id.to_usize()) {
            None => return None,
            Some(state) => state,
        };
        state.matches.get(match_index).map(|&(id, len)| Match {
            pattern: id,
            len,
            end,
        })
    }

    fn match_count(&self, id: S) -> usize {
        self.states[id.to_usize()].matches.len()
    }

    unsafe fn next_state_unchecked(&self, mut current: S, input: u8) -> S {
        // This terminates since:
        //
        // 1. `State.fail` never points to fail_id().
        // 2. All `State.fail` values point to a state closer to `start`.
        // 3. The start state has no transitions to fail_id().
        loop {
            let state = self.states.get_unchecked(current.to_usize());
            let next = state.next_state(input);
            if next != fail_id() {
                return next;
            }
            current = state.fail;
        }
    }
}

/// A representation of an NFA state for an Aho-Corasick automaton.
///
/// It contains the transitions to the next state, a failure transition for
/// cases where there exists no other transition for the current input byte,
/// the matches implied by visiting this state (if any) and the depth of this
/// state. The depth of a state is simply the distance from it to the start
/// state in the automaton, where the depth of the start state is 0.
#[derive(Clone, Debug)]
pub struct State<S> {
    trans: Transitions<S>,
    fail: S,
    matches: Vec<(PatternID, PatternLength)>,
    // TODO: Strictly speaking, this isn't needed for searching. It's only
    // used when building an NFA that supports leftmost match semantics. We
    // could drop this from the state and dynamically build a map only when
    // computing failure transitions, but it's not clear which is better.
    // Benchmark this.
    depth: usize,
}

impl<S: StateID> State<S> {
    fn heap_bytes(&self) -> usize {
        self.trans.heap_bytes()
            + (self.matches.len() * size_of::<(PatternID, PatternLength)>())
    }

    fn add_match(&mut self, i: PatternID, len: PatternLength) {
        self.matches.push((i, len));
    }

    fn is_match(&self) -> bool {
        !self.matches.is_empty()
    }

    fn get_longest_match_len(&self) -> Option<usize> {
        // Why is this true? Because the first match in any matching state
        // will always correspond to the match added to it during trie
        // construction (since when we copy matches due to failure transitions,
        // we always append them). Therefore, it follows that the first match
        // must always be longest since any subsequent match must be from a
        // failure transition, and a failure transition by construction points
        // to a proper suffix. A proper suffix is, by definition, smaller.
        self.matches.get(0).map(|&(_, len)| len)
    }

    fn next_state(&self, input: u8) -> S {
        self.trans.next_state(input)
    }

    fn set_next_state(&mut self, input: u8, next: S) {
        self.trans.set_next_state(input, next);
    }
}

/// Represents the transitions for a single dense state.
///
/// The primary purpose here is to encapsulate unchecked index access. Namely,
/// since a dense representation always contains 256 elements, all values of
/// `u8` are valid indices.
#[derive(Clone, Debug)]
struct Dense<S>(Vec<S>);

impl<S> Dense<S>
where
    S: StateID,
{
    fn new() -> Self {
        Dense(vec![fail_id(); 256])
    }

    #[inline]
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl<S> Index<u8> for Dense<S> {
    type Output = S;

    #[inline]
    fn index(&self, i: u8) -> &S {
        // SAFETY: This is safe because all dense transitions have
        // exactly 256 elements, so all u8 values are valid indices.
        unsafe { self.0.get_unchecked(i as usize) }
    }
}

impl<S> IndexMut<u8> for Dense<S> {
    #[inline]
    fn index_mut(&mut self, i: u8) -> &mut S {
        // SAFETY: This is safe because all dense transitions have
        // exactly 256 elements, so all u8 values are valid indices.
        unsafe { self.0.get_unchecked_mut(i as usize) }
    }
}

/// A representation of transitions in an NFA.
///
/// Transitions have either a sparse representation, which is slower for
/// lookups but uses less memory, or a dense representation, which is faster
/// for lookups but uses more memory. In the sparse representation, the absence
/// of a state implies a transition to `fail_id()`. Transitions to `dead_id()`
/// are still explicitly represented.
///
/// For the NFA, by default, we use a dense representation for transitions for
/// states close to the start state because it's likely these are the states
/// that will be most frequently visited.
#[derive(Clone, Debug)]
enum Transitions<S> {
    Sparse(Vec<(u8, S)>),
    Dense(Dense<S>),
}

impl<S: StateID> Transitions<S> {
    fn heap_bytes(&self) -> usize {
        match *self {
            Transitions::Sparse(ref sparse) => {
                sparse.len() * size_of::<(u8, S)>()
            }
            Transitions::Dense(ref dense) => dense.len() * size_of::<S>(),
        }
    }

    fn next_state(&self, input: u8) -> S {
        match *self {
            Transitions::Sparse(ref sparse) => {
                for &(b, id) in sparse {
                    if b == input {
                        return id;
                    }
                }
                fail_id()
            }
            Transitions::Dense(ref dense) => dense[input],
        }
    }

    fn set_next_state(&mut self, input: u8, next: S) {
        match *self {
            Transitions::Sparse(ref mut sparse) => {
                match sparse.binary_search_by_key(&input, |&(b, _)| b) {
                    Ok(i) => sparse[i] = (input, next),
                    Err(i) => sparse.insert(i, (input, next)),
                }
            }
            Transitions::Dense(ref mut dense) => {
                dense[input] = next;
            }
        }
    }

    /// Iterate over transitions in this state while skipping over transitions
    /// to `fail_id()`.
    fn iter<F: FnMut(u8, S)>(&self, mut f: F) {
        match *self {
            Transitions::Sparse(ref sparse) => {
                for &(b, id) in sparse {
                    f(b, id);
                }
            }
            Transitions::Dense(ref dense) => {
                for b in AllBytesIter::new() {
                    let id = dense[b];
                    if id != fail_id() {
                        f(b, id);
                    }
                }
            }
        }
    }

    /// Iterate over all transitions in this state according to the given
    /// equivalence classes, including transitions to `fail_id()`.
    fn iter_all<F: FnMut(u8, S)>(&self, classes: &ByteClasses, mut f: F) {
        if classes.is_singleton() {
            match *self {
                Transitions::Sparse(ref sparse) => {
                    sparse_iter(sparse, f);
                }
                Transitions::Dense(ref dense) => {
                    for b in AllBytesIter::new() {
                        f(b, dense[b]);
                    }
                }
            }
        } else {
            // In this case, we only want to yield a single byte for each
            // equivalence class.
            match *self {
                Transitions::Sparse(ref sparse) => {
                    let mut last_class = None;
                    sparse_iter(sparse, |b, next| {
                        let class = classes.get(b);
                        if last_class != Some(class) {
                            last_class = Some(class);
                            f(b, next);
                        }
                    })
                }
                Transitions::Dense(ref dense) => {
                    for b in classes.representatives() {
                        f(b, dense[b]);
                    }
                }
            }
        }
    }
}

/// Iterator over transitions in a state, skipping transitions to `fail_id()`.
///
/// This abstracts over the representation of NFA transitions, which may be
/// either in a sparse or dense representation.
///
/// This somewhat idiosyncratically borrows the NFA mutably, so that when one
/// is iterating over transitions, the caller can still mutate the NFA. This
/// is useful when creating failure transitions.
#[derive(Debug)]
struct IterTransitionsMut<'a, S: StateID + 'a> {
    nfa: &'a mut NFA<S>,
    state_id: S,
    cur: usize,
}

impl<'a, S: StateID> IterTransitionsMut<'a, S> {
    fn new(nfa: &'a mut NFA<S>, state_id: S) -> IterTransitionsMut<'a, S> {
        IterTransitionsMut { nfa, state_id, cur: 0 }
    }

    fn nfa(&mut self) -> &mut NFA<S> {
        self.nfa
    }
}

impl<'a, S: StateID> Iterator for IterTransitionsMut<'a, S> {
    type Item = (u8, S);

    fn next(&mut self) -> Option<(u8, S)> {
        match self.nfa.states[self.state_id.to_usize()].trans {
            Transitions::Sparse(ref sparse) => {
                if self.cur >= sparse.len() {
                    return None;
                }
                let i = self.cur;
                self.cur += 1;
                Some(sparse[i])
            }
            Transitions::Dense(ref dense) => {
                while self.cur < dense.len() {
                    // There are always exactly 255 transitions in dense repr.
                    debug_assert!(self.cur < 256);

                    let b = self.cur as u8;
                    let id = dense[b];
                    self.cur += 1;
                    if id != fail_id() {
                        return Some((b, id));
                    }
                }
                None
            }
        }
    }
}

/// A simple builder for configuring the NFA construction of Aho-Corasick.
#[derive(Clone, Debug)]
pub struct Builder {
    dense_depth: usize,
    match_kind: MatchKind,
    prefilter: bool,
    anchored: bool,
    ascii_case_insensitive: bool,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            dense_depth: 2,
            match_kind: MatchKind::default(),
            prefilter: true,
            anchored: false,
            ascii_case_insensitive: false,
        }
    }
}

impl Builder {
    pub fn new() -> Builder {
        Builder::default()
    }

    pub fn build<I, P, S: StateID>(&self, patterns: I) -> Result<NFA<S>>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        Compiler::new(self)?.compile(patterns)
    }

    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
        self.match_kind = kind;
        self
    }

    pub fn dense_depth(&mut self, depth: usize) -> &mut Builder {
        self.dense_depth = depth;
        self
    }

    pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
        self.prefilter = yes;
        self
    }

    pub fn anchored(&mut self, yes: bool) -> &mut Builder {
        self.anchored = yes;
        self
    }

    pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
        self.ascii_case_insensitive = yes;
        self
    }
}

/// A compiler uses a builder configuration and builds up the NFA formulation
/// of an Aho-Corasick automaton. This roughly corresponds to the standard
/// formulation described in textbooks.
#[derive(Debug)]
struct Compiler<'a, S: StateID> {
    builder: &'a Builder,
    prefilter: prefilter::Builder,
    nfa: NFA<S>,
    byte_classes: ByteClassBuilder,
}

impl<'a, S: StateID> Compiler<'a, S> {
    fn new(builder: &'a Builder) -> Result<Compiler<'a, S>> {
        Ok(Compiler {
            builder: builder,
            prefilter: prefilter::Builder::new(builder.match_kind)
                .ascii_case_insensitive(builder.ascii_case_insensitive),
            nfa: NFA {
                match_kind: builder.match_kind,
                start_id: usize_to_state_id(2)?,
                max_pattern_len: 0,
                pattern_count: 0,
                heap_bytes: 0,
                prefilter: None,
                anchored: builder.anchored,
                byte_classes: ByteClasses::singletons(),
                states: vec![],
            },
            byte_classes: ByteClassBuilder::new(),
        })
    }

    fn compile<I, P>(mut self, patterns: I) -> Result<NFA<S>>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        self.add_state(0)?; // the fail state, which is never entered
        self.add_state(0)?; // the dead state, only used for leftmost
        self.add_state(0)?; // the start state
        self.build_trie(patterns)?;
        self.add_start_state_loop();
        self.add_dead_state_loop();
        if !self.builder.anchored {
            if self.match_kind().is_leftmost() {
                self.fill_failure_transitions_leftmost();
            } else {
                self.fill_failure_transitions_standard();
            }
        }
        self.close_start_state_loop();
        self.nfa.byte_classes = self.byte_classes.build();
        if !self.builder.anchored {
            self.nfa.prefilter = self.prefilter.build();
        }
        self.calculate_size();
        Ok(self.nfa)
    }

    /// This sets up the initial prefix trie that makes up the Aho-Corasick
    /// automaton. Effectively, it creates the basic structure of the
    /// automaton, where every pattern given has a path from the start state to
    /// the end of the pattern.
    fn build_trie<I, P>(&mut self, patterns: I) -> Result<()>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        'PATTERNS: for (pati, pat) in patterns.into_iter().enumerate() {
            let pat = pat.as_ref();
            self.nfa.max_pattern_len =
                cmp::max(self.nfa.max_pattern_len, pat.len());
            self.nfa.pattern_count += 1;

            let mut prev = self.nfa.start_id;
            let mut saw_match = false;
            for (depth, &b) in pat.iter().enumerate() {
                // When leftmost-first match semantics are requested, we
                // specifically stop adding patterns when a previously added
                // pattern is a prefix of it. We avoid adding it because
                // leftmost-first semantics imply that the pattern can never
                // match. This is not just an optimization to save space! It
                // is necessary for correctness. In fact, this is the only
                // difference in the automaton between the implementations for
                // leftmost-first and leftmost-longest.
                saw_match = saw_match || self.nfa.state(prev).is_match();
                if self.builder.match_kind.is_leftmost_first() && saw_match {
                    // Skip to the next pattern immediately. This avoids
                    // incorrectly adding a match after this loop terminates.
                    continue 'PATTERNS;
                }

                // Add this byte to our equivalence classes. We don't use these
                // for NFA construction. These are instead used only if we're
                // building a DFA. They would technically be useful for the
                // NFA, but it would require a second pass over the patterns.
                self.byte_classes.set_range(b, b);

                // If the transition from prev using the current byte already
                // exists, then just move through it. Otherwise, add a new
                // state. We track the depth here so that we can determine
                // how to represent transitions. States near the start state
                // use a dense representation that uses more memory but is
                // faster. Other states use a sparse representation that uses
                // less memory but is slower.
                let next = self.nfa.state(prev).next_state(b);
                if next != fail_id() {
                    prev = next;
                } else {
                    let next = self.add_state(depth + 1)?;
                    self.nfa.state_mut(prev).set_next_state(b, next);
                    if self.builder.ascii_case_insensitive {
                        let b = opposite_ascii_case(b);
                        self.nfa.state_mut(prev).set_next_state(b, next);
                    }
                    prev = next;
                }
            }
            // Once the pattern has been added, log the match in the final
            // state that it reached.
            self.nfa.state_mut(prev).add_match(pati, pat.len());
            // ... and hand it to the prefilter builder, if applicable.
            if self.builder.prefilter {
                self.prefilter.add(pat);
            }
        }
        Ok(())
    }

    /// This routine creates failure transitions according to the standard
    /// textbook formulation of the Aho-Corasick algorithm.
    ///
    /// Building failure transitions is the most interesting part of building
    /// the Aho-Corasick automaton, because they are what allow searches to
    /// be performed in linear time. Specifically, a failure transition is
    /// a single transition associated with each state that points back to
    /// the longest proper suffix of the pattern being searched. The failure
    /// transition is followed whenever there exists no transition on the
    /// current state for the current input byte. If there is no other proper
    /// suffix, then the failure transition points back to the starting state.
    ///
    /// For example, let's say we built an Aho-Corasick automaton with the
    /// following patterns: 'abcd' and 'cef'. The trie looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// At this point, it should be fairly straight-forward to see how this
    /// trie can be used in a simplistic way. At any given position in the
    /// text we're searching (called the "subject" string), all we need to do
    /// is follow the transitions in the trie by consuming one transition for
    /// each byte in the subject string. If we reach a match state, then we can
    /// report that location as a match.
    ///
    /// The trick comes when searching a subject string like 'abcef'. We'll
    /// initially follow the transition from S0 to S1 and wind up in S3 after
    /// observng the 'c' byte. At this point, the next byte is 'e' but state
    /// S3 has no transition for 'e', so the search fails. We then would need
    /// to restart the search at the next position in 'abcef', which
    /// corresponds to 'b'. The match would fail, but the next search starting
    /// at 'c' would finally succeed. The problem with this approach is that
    /// we wind up searching the subject string potentially many times. In
    /// effect, this makes the algorithm have worst case `O(n * m)` complexity,
    /// where `n ~ len(subject)` and `m ~ len(all patterns)`. We would instead
    /// like to achieve a `O(n + m)` worst case complexity.
    ///
    /// This is where failure transitions come in. Instead of dying at S3 in
    /// the first search, the automaton can instruct the search to move to
    /// another part of the automaton that corresponds to a suffix of what
    /// we've seen so far. Recall that we've seen 'abc' in the subject string,
    /// and the automaton does indeed have a non-empty suffix, 'c', that could
    /// potentially lead to another match. Thus, the actual Aho-Corasick
    /// automaton for our patterns in this case looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /                      /
    ///        /       ----------------
    ///       /       /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// That is, we have a failure transition from S3 to S5, which is followed
    /// exactly in cases when we are in state S3 but see any byte other than
    /// 'd' (that is, we've "failed" to find a match in this portion of our
    /// trie). We know we can transition back to S5 because we've already seen
    /// a 'c' byte, so we don't need to re-scan it. We can then pick back up
    /// with the search starting at S5 and complete our match.
    ///
    /// Adding failure transitions to a trie is fairly simple, but subtle. The
    /// key issue is that you might have multiple failure transition that you
    /// need to follow. For example, look at the trie for the patterns
    /// 'abcd', 'b', 'bcd' and 'cd':
    ///
    /// ```ignore
    ///        - a - S1 - b - S2 - c - S3 - d - S4*
    ///       /
    ///     S0 - b - S5* - c - S6 - d - S7*
    ///       \
    ///        - c - S8 - d - S9*
    /// ```
    ///
    /// The failure transitions for this trie are defined from S2 to S5,
    /// S3 to S6 and S6 to S8. Moreover, state S2 needs to track that it
    /// corresponds to a match, since its failure transition to S5 is itself
    /// a match state.
    ///
    /// Perhaps simplest way to think about adding these failure transitions
    /// is recursively. That is, if you know the failure transitions for every
    /// possible previous state that could be visited (e.g., when computing the
    /// failure transition for S3, you already know the failure transitions
    /// for S0, S1 and S2), then you can simply follow the failure transition
    /// of the previous state and check whether the incoming transition is
    /// defined after following the failure transition.
    ///
    /// For example, when determining the failure state for S3, by our
    /// assumptions, we already know that there is a failure transition from
    /// S2 (the previous state) to S5. So we follow that transition and check
    /// whether the transition connecting S2 to S3 is defined. Indeed, it is,
    /// as there is a transition from S5 to S6 for the byte 'c'. If no such
    /// transition existed, we could keep following the failure transitions
    /// until we reach the start state, which is the failure transition for
    /// every state that has no corresponding proper suffix.
    ///
    /// We don't actually use recursion to implement this, but instead, use a
    /// breadth first search of the automaton. Our base case is the start
    /// state, whose failure transition is just a transition to itself.
    fn fill_failure_transitions_standard(&mut self) {
        // Initialize the queue for breadth first search with all transitions
        // out of the start state. We handle the start state specially because
        // we only want to follow non-self transitions. If we followed self
        // transitions, then this would never terminate.
        let mut queue = VecDeque::new();
        let mut seen = self.queued_set();
        for b in AllBytesIter::new() {
            let next = self.nfa.start().next_state(b);
            if next != self.nfa.start_id {
                if !seen.contains(next) {
                    queue.push_back(next);
                    seen.insert(next);
                }
            }
        }
        while let Some(id) = queue.pop_front() {
            let mut it = self.nfa.iter_transitions_mut(id);
            while let Some((b, next)) = it.next() {
                if !seen.contains(next) {
                    queue.push_back(next);
                    seen.insert(next);
                }

                let mut fail = it.nfa().state(id).fail;
                while it.nfa().state(fail).next_state(b) == fail_id() {
                    fail = it.nfa().state(fail).fail;
                }
                fail = it.nfa().state(fail).next_state(b);
                it.nfa().state_mut(next).fail = fail;
                it.nfa().copy_matches(fail, next);
            }
            // If the start state is a match state, then this automaton can
            // match the empty string. This implies all states are match states
            // since every position matches the empty string, so copy the
            // matches from the start state to every state. Strictly speaking,
            // this is only necessary for overlapping matches since each
            // non-empty non-start match state needs to report empty matches
            // in addition to its own. For the non-overlapping case, such
            // states only report the first match, which is never empty since
            // it isn't a start state.
            it.nfa().copy_empty_matches(id);
        }
    }

    /// This routine is just like fill_failure_transitions_standard, except
    /// it adds failure transitions in a way that preserves leftmost match
    /// semantics (for both leftmost-first and leftmost-longest).
    ///
    /// The algorithms are so similar that it would be possible to write it
    /// generically. But doing so without overhead would require a bit of
    /// ceremony, so we just copy it and add in the extra leftmost logic.
    /// Moreover, the standard algorithm above is so simple that it feels like
    /// a crime to disturb it.
    ///
    /// In effect, this proceeds just like the standard approach, but we
    /// specifically add only a subset of all failure transitions. Namely, we
    /// only add failure transitions that either do not occur after a match
    /// or failure transitions that do occur after a match but preserve the
    /// match. The comments in the implementation below should help.
    ///
    /// N.B. The only differences in the automaton between leftmost-first and
    /// leftmost-longest are in trie construction. Otherwise, both have exactly
    /// the same set of failure transitions. leftmost-longest adds everything
    /// to the trie, where as leftmost-first skips any patterns for which there
    /// exists a prefix of it that was added earlier.
    ///
    /// N.B. I came up with this algorithm on my own, and after scouring all of
    /// the other AC implementations I know of (Perl, Snort, many on GitHub).
    /// I couldn't find any that implement leftmost semantics like this.
    /// Perl of course needs leftmost-first semantics, but they implement it
    /// with a seeming hack at *search* time instead of encoding it into the
    /// automaton. There are also a couple Java libraries that support leftmost
    /// longest semantics, but they do it by building a queue of matches at
    /// search time, which is even worse than what Perl is doing. ---AG
    fn fill_failure_transitions_leftmost(&mut self) {
        /// Represents an item in our queue of states to process.
        ///
        /// Fundamentally, this queue serves the same purpose as the queue
        /// for filling failure transitions using the standard formulation.
        /// In the leftmost case, though, we need to track a bit more
        /// information. See comments below.
        #[derive(Clone, Copy, Debug)]
        struct QueuedState<S> {
            /// The id of the state to visit.
            id: S,
            /// The depth at which the first match was observed in the path
            /// to this state. Note that this corresponds to the depth at
            /// which the beginning of the match was detected. If no match
            /// has been seen, then this is None.
            match_at_depth: Option<usize>,
        }

        impl<S: StateID> QueuedState<S> {
            /// Create a queued state corresponding to the given NFA's start
            /// state.
            fn start(nfa: &NFA<S>) -> QueuedState<S> {
                let match_at_depth =
                    if nfa.start().is_match() { Some(0) } else { None };
                QueuedState { id: nfa.start_id, match_at_depth }
            }

            /// Return the next state to queue up. The given id must be a state
            /// corresponding to a single transition from this queued state.
            fn next_queued_state(
                &self,
                nfa: &NFA<S>,
                id: S,
            ) -> QueuedState<S> {
                let match_at_depth = self.next_match_at_depth(nfa, id);
                QueuedState { id, match_at_depth }
            }

            /// Return the earliest depth at which a match has occurred for
            /// the given state. The given state must correspond to a single
            /// transition from this queued state.
            fn next_match_at_depth(
                &self,
                nfa: &NFA<S>,
                next: S,
            ) -> Option<usize> {
                // This is a little tricky. If the previous state has already
                // seen a match or if `next` isn't a match state, then nothing
                // needs to change since a later state cannot find an earlier
                // match.
                match self.match_at_depth {
                    Some(x) => return Some(x),
                    None if nfa.state(next).is_match() => {}
                    None => return None,
                }
                let depth = nfa.state(next).depth
                    - nfa.state(next).get_longest_match_len().unwrap()
                    + 1;
                Some(depth)
            }
        }

        // Initialize the queue for breadth first search with all transitions
        // out of the start state. We handle the start state specially because
        // we only want to follow non-self transitions. If we followed self
        // transitions, then this would never terminate.
        let mut queue: VecDeque<QueuedState<S>> = VecDeque::new();
        let mut seen = self.queued_set();
        let start = QueuedState::start(&self.nfa);
        for b in AllBytesIter::new() {
            let next_id = self.nfa.start().next_state(b);
            if next_id != start.id {
                let next = start.next_queued_state(&self.nfa, next_id);
                if !seen.contains(next.id) {
                    queue.push_back(next);
                    seen.insert(next.id);
                }
                // If a state immediately following the start state is a match
                // state, then we never want to follow its failure transition
                // since the failure transition necessarily leads back to the
                // start state, which we never want to do for leftmost matching
                // after a match has been found.
                //
                // N.B. This is a special case of the more general handling
                // found below.
                if self.nfa.state(next_id).is_match() {
                    self.nfa.state_mut(next_id).fail = dead_id();
                }
            }
        }
        while let Some(item) = queue.pop_front() {
            let mut any_trans = false;
            let mut it = self.nfa.iter_transitions_mut(item.id);
            while let Some((b, next_id)) = it.next() {
                any_trans = true;

                // Queue up the next state.
                let next = item.next_queued_state(it.nfa(), next_id);
                if !seen.contains(next.id) {
                    queue.push_back(next);
                    seen.insert(next.id);
                }

                // Find the failure state for next. Same as standard.
                let mut fail = it.nfa().state(item.id).fail;
                while it.nfa().state(fail).next_state(b) == fail_id() {
                    fail = it.nfa().state(fail).fail;
                }
                fail = it.nfa().state(fail).next_state(b);

                // This is the key difference from the standard formulation.
                // Namely, if we've seen a match, then we only want a failure
                // transition if the failure transition preserves the match
                // we've seen. In general, this is not true of all failure
                // transitions since they can point back to any suffix of what
                // we've seen so far. Instead, we only want to point back to
                // suffixes that contain any match we've seen.
                //
                // We achieve this by comparing the depth of the failure
                // transition with the number of states between this state
                // and the beginning of the earliest match detected. If the
                // depth of the failure state is smaller than this difference,
                // then it cannot contain the match. If it's bigger or equal
                // to the difference, then it necessarily includes the match
                // we've seen since all failure transitions correspond to a
                // suffix.
                //
                // If we've determined that we don't want the failure
                // transition, then we set this state's failure transition to
                // the dead state. In other words, when a search hits this
                // state, it will not continue and correctly stop. (N.B. A
                // dead state is different than a fail state. A dead state
                // MUST be preceded by a match and acts as a sentinel to search
                // routines to terminate.)
                //
                // Understanding this is tricky, and it took me several days
                // to think through this and get it right. If you want to grok
                // it, then I'd recommend: 1) switch the implementation to
                // always use the standard algorithm for filling in failure
                // transitions, 2) run the test suite and 3) examine the test
                // failures. Write out the automatons for them and try to work
                // backwards by figuring out which failure transitions should
                // be removed. You should arrive at the same rule used below.
                if let Some(match_depth) = next.match_at_depth {
                    let fail_depth = it.nfa().state(fail).depth;
                    let next_depth = it.nfa().state(next.id).depth;
                    if next_depth - match_depth + 1 > fail_depth {
                        it.nfa().state_mut(next.id).fail = dead_id();
                        continue;
                    }
                    assert_ne!(
                        start.id,
                        it.nfa().state(next.id).fail,
                        "states that are match states or follow match \
                         states should never have a failure transition \
                         back to the start state in leftmost searching",
                    );
                }
                it.nfa().state_mut(next.id).fail = fail;
                it.nfa().copy_matches(fail, next.id);
            }
            // If there are no transitions for this state and if it's a match
            // state, then we must set its failure transition to the dead
            // state since we never want it to restart the search.
            if !any_trans && it.nfa().state(item.id).is_match() {
                it.nfa().state_mut(item.id).fail = dead_id();
            }
            // We don't need to copy empty matches from the start state here
            // because that's only necessary for overlapping matches and
            // leftmost match kinds don't support overlapping matches.
        }
    }

    /// Returns a set that tracked queued states.
    ///
    /// This is only necessary when ASCII case insensitivity is enabled, since
    /// it is the only way to visit the same state twice. Otherwise, this
    /// returns an inert set that nevers adds anything and always reports
    /// `false` for every member test.
    fn queued_set(&self) -> QueuedSet<S> {
        if self.builder.ascii_case_insensitive {
            QueuedSet::active()
        } else {
            QueuedSet::inert()
        }
    }

    /// Set the failure transitions on the start state to loop back to the
    /// start state. This effectively permits the Aho-Corasick automaton to
    /// match at any position. This is also required for finding the next
    /// state to terminate, namely, finding the next state should never return
    /// a fail_id.
    ///
    /// This must be done after building the initial trie, since trie
    /// construction depends on transitions to `fail_id` to determine whether a
    /// state already exists or not.
    fn add_start_state_loop(&mut self) {
        let start_id = self.nfa.start_id;
        let start = self.nfa.start_mut();
        for b in AllBytesIter::new() {
            if start.next_state(b) == fail_id() {
                start.set_next_state(b, start_id);
            }
        }
    }

    /// Remove the start state loop by rewriting any transitions on the start
    /// state back to the start state with transitions to the dead state.
    ///
    /// The loop is only closed when two conditions are met: the start state
    /// is a match state and the match kind is leftmost-first or
    /// leftmost-longest. (Alternatively, if this is an anchored automaton,
    /// then the start state is always closed, regardless of aforementioned
    /// conditions.)
    ///
    /// The reason for this is that under leftmost semantics, a start state
    /// that is also a match implies that we should never restart the search
    /// process. We allow normal transitions out of the start state, but if
    /// none exist, we transition to the dead state, which signals that
    /// searching should stop.
    fn close_start_state_loop(&mut self) {
        if self.builder.anchored
            || (self.match_kind().is_leftmost() && self.nfa.start().is_match())
        {
            let start_id = self.nfa.start_id;
            let start = self.nfa.start_mut();
            for b in AllBytesIter::new() {
                if start.next_state(b) == start_id {
                    start.set_next_state(b, dead_id());
                }
            }
        }
    }

    /// Sets all transitions on the dead state to point back to the dead state.
    /// Normally, missing transitions map back to the failure state, but the
    /// point of the dead state is to act as a sink that can never be escaped.
    fn add_dead_state_loop(&mut self) {
        let dead = self.nfa.state_mut(dead_id());
        for b in AllBytesIter::new() {
            dead.set_next_state(b, dead_id());
        }
    }

    /// Computes the total amount of heap used by this NFA in bytes.
    fn calculate_size(&mut self) {
        let mut size = 0;
        for state in &self.nfa.states {
            size += state.heap_bytes();
        }
        self.nfa.heap_bytes = size;
    }

    /// Add a new state to the underlying NFA with the given depth. The depth
    /// is used to determine how to represent the transitions.
    ///
    /// If adding the new state would overflow the chosen state ID
    /// representation, then this returns an error.
    fn add_state(&mut self, depth: usize) -> Result<S> {
        if depth < self.builder.dense_depth {
            self.nfa.add_dense_state(depth)
        } else {
            self.nfa.add_sparse_state(depth)
        }
    }

    /// Returns the match kind configured on the underlying builder.
    fn match_kind(&self) -> MatchKind {
        self.builder.match_kind
    }
}

/// A set of state identifiers used to avoid revisiting the same state multiple
/// times when filling in failure transitions.
///
/// This set has an "inert" and an "active" mode. When inert, the set never
/// stores anything and always returns `false` for every member test. This is
/// useful to avoid the performance and memory overhead of maintaining this
/// set when it is not needed.
#[derive(Debug)]
struct QueuedSet<S> {
    set: Option<BTreeSet<S>>,
}

impl<S: StateID> QueuedSet<S> {
    /// Return an inert set that returns `false` for every state ID membership
    /// test.
    fn inert() -> QueuedSet<S> {
        QueuedSet { set: None }
    }

    /// Return an active set that tracks state ID membership.
    fn active() -> QueuedSet<S> {
        QueuedSet { set: Some(BTreeSet::new()) }
    }

    /// Inserts the given state ID into this set. (If the set is inert, then
    /// this is a no-op.)
    fn insert(&mut self, state_id: S) {
        if let Some(ref mut set) = self.set {
            set.insert(state_id);
        }
    }

    /// Returns true if and only if the given state ID is in this set. If the
    /// set is inert, this always returns false.
    fn contains(&self, state_id: S) -> bool {
        match self.set {
            None => false,
            Some(ref set) => set.contains(&state_id),
        }
    }
}

/// An iterator over every byte value.
///
/// We use this instead of (0..256).map(|b| b as u8) because this optimizes
/// better in debug builds.
///
/// We also use this instead of 0..=255 because we're targeting Rust 1.24 and
/// inclusive range syntax was stabilized in Rust 1.26. We can get rid of this
/// once our MSRV is Rust 1.26 or newer.
#[derive(Debug)]
struct AllBytesIter(u16);

impl AllBytesIter {
    fn new() -> AllBytesIter {
        AllBytesIter(0)
    }
}

impl Iterator for AllBytesIter {
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        if self.0 >= 256 {
            None
        } else {
            let b = self.0 as u8;
            self.0 += 1;
            Some(b)
        }
    }
}

impl<S: StateID> fmt::Debug for NFA<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "NFA(")?;
        writeln!(f, "match_kind: {:?}", self.match_kind)?;
        writeln!(f, "{}", "-".repeat(79))?;
        for (id, s) in self.states.iter().enumerate() {
            let mut trans = vec![];
            s.trans.iter(|byte, next| {
                // The start state has a bunch of uninteresting transitions
                // back into itself. It's questionable to hide them since they
                // are critical to understanding the automaton, but they are
                // very noisy without better formatting for contiugous ranges
                // to the same state.
                if id == self.start_id.to_usize() && next == self.start_id {
                    return;
                }
                // Similarly, the dead state has a bunch of uninteresting
                // transitions too.
                if id == dead_id() {
                    return;
                }
                trans.push(format!("{} => {}", escape(byte), next.to_usize()));
            });
            writeln!(f, "{:04}: {}", id, trans.join(", "))?;

            let matches: Vec<String> = s
                .matches
                .iter()
                .map(|&(pattern_id, _)| pattern_id.to_string())
                .collect();
            writeln!(f, "  matches: {}", matches.join(", "))?;
            writeln!(f, "     fail: {}", s.fail.to_usize())?;
            writeln!(f, "    depth: {}", s.depth)?;
        }
        writeln!(f, "{}", "-".repeat(79))?;
        writeln!(f, ")")?;
        Ok(())
    }
}

/// Iterate over all possible byte transitions given a sparse set.
fn sparse_iter<S: StateID, F: FnMut(u8, S)>(trans: &[(u8, S)], mut f: F) {
    let mut byte = 0u16;
    for &(b, id) in trans {
        while byte < (b as u16) {
            f(byte as u8, fail_id());
            byte += 1;
        }
        f(b, id);
        byte += 1;
    }
    for b in byte..256 {
        f(b as u8, fail_id());
    }
}

/// Safely return two mutable borrows to two different locations in the given
/// slice.
///
/// This panics if i == j.
fn get_two_mut<T>(xs: &mut [T], i: usize, j: usize) -> (&mut T, &mut T) {
    assert!(i != j, "{} must not be equal to {}", i, j);
    if i < j {
        let (before, after) = xs.split_at_mut(j);
        (&mut before[i], &mut after[0])
    } else {
        let (before, after) = xs.split_at_mut(i);
        (&mut after[0], &mut before[j])
    }
}

/// Return the given byte as its escaped string form.
fn escape(b: u8) -> String {
    use std::ascii;

    String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn scratch() {
        let nfa: NFA<usize> = Builder::new()
            .dense_depth(0)
            // .match_kind(MatchKind::LeftmostShortest)
            // .match_kind(MatchKind::LeftmostLongest)
            .match_kind(MatchKind::LeftmostFirst)
            // .build(&["abcd", "ce", "b"])
            // .build(&["ab", "bc"])
            // .build(&["b", "bcd", "ce"])
            // .build(&["abc", "bx"])
            // .build(&["abc", "bd", "ab"])
            // .build(&["abcdefghi", "hz", "abcdefgh"])
            // .build(&["abcd", "bce", "b"])
            .build(&["abcdefg", "bcde", "bcdef"])
            .unwrap();
        println!("{:?}", nfa);
    }
}