1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
use std::cmp; use std::fmt; use std::panic::{RefUnwindSafe, UnwindSafe}; use std::u8; use memchr::{memchr, memchr2, memchr3}; use ahocorasick::MatchKind; use packed; use Match; /// A candidate is the result of running a prefilter on a haystack at a /// particular position. The result is either no match, a confirmed match or /// a possible match. /// /// When no match is returned, the prefilter is guaranteeing that no possible /// match can be found in the haystack, and the caller may trust this. That is, /// all correct prefilters must never report false negatives. /// /// In some cases, a prefilter can confirm a match very quickly, in which case, /// the caller may use this to stop what it's doing and report the match. In /// this case, prefilter implementations must never report a false positive. /// In other cases, the prefilter can only report a potential match, in which /// case the callers must attempt to confirm the match. In this case, prefilter /// implementations are permitted to return false positives. #[derive(Clone, Debug)] pub enum Candidate { None, Match(Match), PossibleStartOfMatch(usize), } impl Candidate { /// Convert this candidate into an option. This is useful when callers /// do not distinguish between true positives and false positives (i.e., /// the caller must always confirm the match in order to update some other /// state). pub fn into_option(self) -> Option<usize> { match self { Candidate::None => None, Candidate::Match(ref m) => Some(m.start()), Candidate::PossibleStartOfMatch(start) => Some(start), } } } /// A prefilter describes the behavior of fast literal scanners for quickly /// skipping past bytes in the haystack that we know cannot possibly /// participate in a match. pub trait Prefilter: Send + Sync + RefUnwindSafe + UnwindSafe + fmt::Debug { /// Returns the next possible match candidate. This may yield false /// positives, so callers must confirm a match starting at the position /// returned. This, however, must never produce false negatives. That is, /// this must, at minimum, return the starting position of the next match /// in the given haystack after or at the given position. fn next_candidate( &self, state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate; /// A method for cloning a prefilter, to work-around the fact that Clone /// is not object-safe. fn clone_prefilter(&self) -> Box<dyn Prefilter>; /// Returns the approximate total amount of heap used by this prefilter, in /// units of bytes. fn heap_bytes(&self) -> usize; /// Returns true if and only if this prefilter never returns false /// positives. This is useful for completely avoiding the automaton /// when the prefilter can quickly confirm its own matches. /// /// By default, this returns true, which is conservative; it is always /// correct to return `true`. Returning `false` here and reporting a false /// positive will result in incorrect searches. fn reports_false_positives(&self) -> bool { true } } impl<'a, P: Prefilter + ?Sized> Prefilter for &'a P { #[inline] fn next_candidate( &self, state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { (**self).next_candidate(state, haystack, at) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { (**self).clone_prefilter() } fn heap_bytes(&self) -> usize { (**self).heap_bytes() } fn reports_false_positives(&self) -> bool { (**self).reports_false_positives() } } /// A convenience object for representing any type that implements Prefilter /// and is cloneable. #[derive(Debug)] pub struct PrefilterObj(Box<dyn Prefilter>); impl Clone for PrefilterObj { fn clone(&self) -> Self { PrefilterObj(self.0.clone_prefilter()) } } impl PrefilterObj { /// Create a new prefilter object. pub fn new<T: Prefilter + 'static>(t: T) -> PrefilterObj { PrefilterObj(Box::new(t)) } /// Return the underlying prefilter trait object. pub fn as_ref(&self) -> &dyn Prefilter { &*self.0 } } /// PrefilterState tracks state associated with the effectiveness of a /// prefilter. It is used to track how many bytes, on average, are skipped by /// the prefilter. If this average dips below a certain threshold over time, /// then the state renders the prefilter inert and stops using it. /// /// A prefilter state should be created for each search. (Where creating an /// iterator via, e.g., `find_iter`, is treated as a single search.) #[derive(Clone, Debug)] pub struct PrefilterState { /// The number of skips that has been executed. skips: usize, /// The total number of bytes that have been skipped. skipped: usize, /// The maximum length of a match. This is used to help determine how many /// bytes on average should be skipped in order for a prefilter to be /// effective. max_match_len: usize, /// Once this heuristic has been deemed permanently ineffective, it will be /// inert throughout the rest of its lifetime. This serves as a cheap way /// to check inertness. inert: bool, /// The last (absolute) position at which a prefilter scanned to. /// Prefilters can use this position to determine whether to re-scan or /// not. /// /// Unlike other things that impact effectiveness, this is a fleeting /// condition. That is, a prefilter can be considered ineffective if it is /// at a position before `last_scan_at`, but can become effective again /// once the search moves past `last_scan_at`. /// /// The utility of this is to both avoid additional overhead from calling /// the prefilter and to avoid quadratic behavior. This ensures that a /// prefilter will scan any particular byte at most once. (Note that some /// prefilters, like the start-byte prefilter, do not need to use this /// field at all, since it only looks for starting bytes.) last_scan_at: usize, } impl PrefilterState { /// The minimum number of skip attempts to try before considering whether /// a prefilter is effective or not. const MIN_SKIPS: usize = 40; /// The minimum amount of bytes that skipping must average, expressed as a /// factor of the multiple of the length of a possible match. /// /// That is, after MIN_SKIPS have occurred, if the average number of bytes /// skipped ever falls below MIN_AVG_FACTOR * max-match-length, then the /// prefilter outed to be rendered inert. const MIN_AVG_FACTOR: usize = 2; /// Create a fresh prefilter state. pub fn new(max_match_len: usize) -> PrefilterState { PrefilterState { skips: 0, skipped: 0, max_match_len, inert: false, last_scan_at: 0, } } /// Update this state with the number of bytes skipped on the last /// invocation of the prefilter. #[inline] fn update_skipped_bytes(&mut self, skipped: usize) { self.skips += 1; self.skipped += skipped; } /// Updates the position at which the last scan stopped. This may be /// greater than the position of the last candidate reported. For example, /// searching for the "rare" byte `z` in `abczdef` for the pattern `abcz` /// will report a candidate at position `0`, but the end of its last scan /// will be at position `3`. /// /// This position factors into the effectiveness of this prefilter. If the /// current position is less than the last position at which a scan ended, /// then the prefilter should not be re-run until the search moves past /// that position. #[inline] fn update_at(&mut self, at: usize) { if at > self.last_scan_at { self.last_scan_at = at; } } /// Return true if and only if this state indicates that a prefilter is /// still effective. /// /// The given pos should correspond to the current starting position of the /// search. #[inline] pub fn is_effective(&mut self, at: usize) -> bool { if self.inert { return false; } if at < self.last_scan_at { return false; } if self.skips < PrefilterState::MIN_SKIPS { return true; } let min_avg = PrefilterState::MIN_AVG_FACTOR * self.max_match_len; if self.skipped >= min_avg * self.skips { return true; } // We're inert. self.inert = true; false } } /// A builder for constructing the best possible prefilter. When constructed, /// this builder will heuristically select the best prefilter it can build, /// if any, and discard the rest. #[derive(Debug)] pub struct Builder { count: usize, ascii_case_insensitive: bool, start_bytes: StartBytesBuilder, rare_bytes: RareBytesBuilder, packed: Option<packed::Builder>, } impl Builder { /// Create a new builder for constructing the best possible prefilter. pub fn new(kind: MatchKind) -> Builder { let pbuilder = kind .as_packed() .map(|kind| packed::Config::new().match_kind(kind).builder()); Builder { count: 0, ascii_case_insensitive: false, start_bytes: StartBytesBuilder::new(), rare_bytes: RareBytesBuilder::new(), packed: pbuilder, } } /// Enable ASCII case insensitivity. When set, byte strings added to this /// builder will be interpreted without respect to ASCII case. pub fn ascii_case_insensitive(mut self, yes: bool) -> Builder { self.ascii_case_insensitive = yes; self.start_bytes = self.start_bytes.ascii_case_insensitive(yes); self.rare_bytes = self.rare_bytes.ascii_case_insensitive(yes); self } /// Return a prefilter suitable for quickly finding potential matches. /// /// All patterns added to an Aho-Corasick automaton should be added to this /// builder before attempting to construct the prefilter. pub fn build(&self) -> Option<PrefilterObj> { match (self.start_bytes.build(), self.rare_bytes.build()) { // If we could build both start and rare prefilters, then there are // a few cases in which we'd want to use the start-byte prefilter // over the rare-byte prefilter, since the former has lower // overhead. (prestart @ Some(_), prerare @ Some(_)) => { // If the start-byte prefilter can scan for a smaller number // of bytes than the rare-byte prefilter, then it's probably // faster. let has_fewer_bytes = self.start_bytes.count < self.rare_bytes.count; // Otherwise, if the combined frequency rank of the detected // bytes in the start-byte prefilter is "close" to the combined // frequency rank of the rare-byte prefilter, then we pick // the start-byte prefilter even if the rare-byte prefilter // heuristically searches for rare bytes. This is because the // rare-byte prefilter has higher constant costs, so we tend to // prefer the start-byte prefilter when we can. let has_rarer_bytes = self.start_bytes.rank_sum <= self.rare_bytes.rank_sum + 50; if has_fewer_bytes || has_rarer_bytes { prestart } else { prerare } } (prestart @ Some(_), None) => prestart, (None, prerare @ Some(_)) => prerare, (None, None) if self.ascii_case_insensitive => None, (None, None) => self .packed .as_ref() .and_then(|b| b.build()) .map(|s| PrefilterObj::new(Packed(s))), } } /// Add a literal string to this prefilter builder. pub fn add(&mut self, bytes: &[u8]) { self.count += 1; self.start_bytes.add(bytes); self.rare_bytes.add(bytes); if let Some(ref mut pbuilder) = self.packed { pbuilder.add(bytes); } } } /// A type that wraps a packed searcher and implements the `Prefilter` /// interface. #[derive(Clone, Debug)] struct Packed(packed::Searcher); impl Prefilter for Packed { fn next_candidate( &self, _state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { self.0.find_at(haystack, at).map_or(Candidate::None, Candidate::Match) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { self.0.heap_bytes() } fn reports_false_positives(&self) -> bool { false } } /// A builder for constructing a rare byte prefilter. /// /// A rare byte prefilter attempts to pick out a small set of rare bytes that /// occurr in the patterns, and then quickly scan to matches of those rare /// bytes. #[derive(Clone, Debug)] struct RareBytesBuilder { /// Whether this prefilter should account for ASCII case insensitivity or /// not. ascii_case_insensitive: bool, /// A set of byte offsets associated with detected rare bytes. An entry is /// only set if a rare byte is detected in a pattern. byte_offsets: RareByteOffsets, /// Whether this is available as a prefilter or not. This can be set to /// false during construction if a condition is seen that invalidates the /// use of the rare-byte prefilter. available: bool, /// The number of bytes set to an active value in `byte_offsets`. count: usize, /// The sum of frequency ranks for the rare bytes detected. This is /// intended to give a heuristic notion of how rare the bytes are. rank_sum: u16, } /// A set of rare byte offsets, keyed by byte. #[derive(Clone, Copy)] struct RareByteOffsets { /// When an item in this set has an offset of u8::MAX (255), then it is /// considered unset. set: [RareByteOffset; 256], } impl RareByteOffsets { /// Create a new empty set of rare byte offsets. pub fn empty() -> RareByteOffsets { RareByteOffsets { set: [RareByteOffset::default(); 256] } } /// Add the given offset for the given byte to this set. If the offset is /// greater than the existing offset, then it overwrites the previous /// value and returns false. If there is no previous value set, then this /// sets it and returns true. /// /// The given offset must be active, otherwise this panics. pub fn apply(&mut self, byte: u8, off: RareByteOffset) -> bool { assert!(off.is_active()); let existing = &mut self.set[byte as usize]; if !existing.is_active() { *existing = off; true } else { if existing.max < off.max { *existing = off; } false } } } impl fmt::Debug for RareByteOffsets { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut offsets = vec![]; for off in self.set.iter() { if off.is_active() { offsets.push(off); } } f.debug_struct("RareByteOffsets").field("set", &offsets).finish() } } /// Offsets associated with an occurrence of a "rare" byte in any of the /// patterns used to construct a single Aho-Corasick automaton. #[derive(Clone, Copy, Debug)] struct RareByteOffset { /// The maximum offset at which a particular byte occurs from the start /// of any pattern. This is used as a shift amount. That is, when an /// occurrence of this byte is found, the candidate position reported by /// the prefilter is `position_of_byte - max`, such that the automaton /// will begin its search at a position that is guaranteed to observe a /// match. /// /// To avoid accidentally quadratic behavior, a prefilter is considered /// ineffective when it is asked to start scanning from a position that it /// has already scanned past. /// /// N.B. The maximum value for this is 254. A value of 255 indicates that /// this is unused. If a rare byte is found at an offset of 255 or greater, /// then the rare-byte prefilter is disabled for simplicity. max: u8, } impl Default for RareByteOffset { fn default() -> RareByteOffset { RareByteOffset { max: u8::MAX } } } impl RareByteOffset { /// Create a new rare byte offset. If the given offset is too big, then /// an inactive `RareByteOffset` is returned. fn new(max: usize) -> RareByteOffset { if max > (u8::MAX - 1) as usize { RareByteOffset::default() } else { RareByteOffset { max: max as u8 } } } /// Returns true if and only if this offset is active. If it's inactive, /// then it should not be used. fn is_active(&self) -> bool { self.max < u8::MAX } } impl RareBytesBuilder { /// Create a new builder for constructing a rare byte prefilter. fn new() -> RareBytesBuilder { RareBytesBuilder { ascii_case_insensitive: false, byte_offsets: RareByteOffsets::empty(), available: true, count: 0, rank_sum: 0, } } /// Enable ASCII case insensitivity. When set, byte strings added to this /// builder will be interpreted without respect to ASCII case. fn ascii_case_insensitive(mut self, yes: bool) -> RareBytesBuilder { self.ascii_case_insensitive = yes; self } /// Build the rare bytes prefilter. /// /// If there are more than 3 distinct starting bytes, or if heuristics /// otherwise determine that this prefilter should not be used, then `None` /// is returned. fn build(&self) -> Option<PrefilterObj> { if !self.available || self.count > 3 { return None; } let (mut bytes, mut len) = ([0; 3], 0); for b in 0..256 { if self.byte_offsets.set[b].is_active() { bytes[len] = b as u8; len += 1; } } match len { 0 => None, 1 => Some(PrefilterObj::new(RareBytesOne { byte1: bytes[0], offset: self.byte_offsets.set[bytes[0] as usize], })), 2 => Some(PrefilterObj::new(RareBytesTwo { offsets: self.byte_offsets, byte1: bytes[0], byte2: bytes[1], })), 3 => Some(PrefilterObj::new(RareBytesThree { offsets: self.byte_offsets, byte1: bytes[0], byte2: bytes[1], byte3: bytes[2], })), _ => unreachable!(), } } /// Add a byte string to this builder. /// /// All patterns added to an Aho-Corasick automaton should be added to this /// builder before attempting to construct the prefilter. fn add(&mut self, bytes: &[u8]) { // If we've already blown our budget, then don't waste time looking // for more rare bytes. if self.count > 3 { self.available = false; return; } let mut rarest = match bytes.get(0) { None => return, Some(&b) => (b, 0, freq_rank(b)), }; // The idea here is to look for the rarest byte in each pattern, and // add that to our set. As a special exception, if we see a byte that // we've already added, then we immediately stop and choose that byte, // even if there's another rare byte in the pattern. This helps us // apply the rare byte optimization in more cases by attempting to pick // bytes that are in common between patterns. So for example, if we // were searching for `Sherlock` and `lockjaw`, then this would pick // `k` for both patterns, resulting in the use of `memchr` instead of // `memchr2` for `k` and `j`. for (pos, &b) in bytes.iter().enumerate() { if self.byte_offsets.set[b as usize].is_active() { self.add_rare_byte(b, pos); return; } let rank = freq_rank(b); if rank < rarest.2 { rarest = (b, pos, rank); } } self.add_rare_byte(rarest.0, rarest.1); } fn add_rare_byte(&mut self, byte: u8, pos: usize) { self.add_one_byte(byte, pos); if self.ascii_case_insensitive { self.add_one_byte(opposite_ascii_case(byte), pos); } } fn add_one_byte(&mut self, byte: u8, pos: usize) { let off = RareByteOffset::new(pos); if !off.is_active() { self.available = false; return; } if self.byte_offsets.apply(byte, off) { self.count += 1; self.rank_sum += freq_rank(byte) as u16; } } } /// A prefilter for scanning for a single "rare" byte. #[derive(Clone, Debug)] struct RareBytesOne { byte1: u8, offset: RareByteOffset, } impl Prefilter for RareBytesOne { fn next_candidate( &self, state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr(self.byte1, &haystack[at..]) .map(|i| { let pos = at + i; state.last_scan_at = pos; cmp::max(at, pos.saturating_sub(self.offset.max as usize)) }) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// A prefilter for scanning for two "rare" bytes. #[derive(Clone, Debug)] struct RareBytesTwo { offsets: RareByteOffsets, byte1: u8, byte2: u8, } impl Prefilter for RareBytesTwo { fn next_candidate( &self, state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr2(self.byte1, self.byte2, &haystack[at..]) .map(|i| { let pos = at + i; state.update_at(pos); let offset = self.offsets.set[haystack[pos] as usize].max; cmp::max(at, pos.saturating_sub(offset as usize)) }) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// A prefilter for scanning for three "rare" bytes. #[derive(Clone, Debug)] struct RareBytesThree { offsets: RareByteOffsets, byte1: u8, byte2: u8, byte3: u8, } impl Prefilter for RareBytesThree { fn next_candidate( &self, state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..]) .map(|i| { let pos = at + i; state.update_at(pos); let offset = self.offsets.set[haystack[pos] as usize].max; cmp::max(at, pos.saturating_sub(offset as usize)) }) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// A builder for constructing a starting byte prefilter. /// /// A starting byte prefilter is a simplistic prefilter that looks for possible /// matches by reporting all positions corresponding to a particular byte. This /// generally only takes affect when there are at most 3 distinct possible /// starting bytes. e.g., the patterns `foo`, `bar`, and `baz` have two /// distinct starting bytes (`f` and `b`), and this prefiler returns all /// occurrences of either `f` or `b`. /// /// In some cases, a heuristic frequency analysis may determine that it would /// be better not to use this prefilter even when there are 3 or fewer distinct /// starting bytes. #[derive(Clone, Debug)] struct StartBytesBuilder { /// Whether this prefilter should account for ASCII case insensitivity or /// not. ascii_case_insensitive: bool, /// The set of starting bytes observed. byteset: Vec<bool>, /// The number of bytes set to true in `byteset`. count: usize, /// The sum of frequency ranks for the rare bytes detected. This is /// intended to give a heuristic notion of how rare the bytes are. rank_sum: u16, } impl StartBytesBuilder { /// Create a new builder for constructing a start byte prefilter. fn new() -> StartBytesBuilder { StartBytesBuilder { ascii_case_insensitive: false, byteset: vec![false; 256], count: 0, rank_sum: 0, } } /// Enable ASCII case insensitivity. When set, byte strings added to this /// builder will be interpreted without respect to ASCII case. fn ascii_case_insensitive(mut self, yes: bool) -> StartBytesBuilder { self.ascii_case_insensitive = yes; self } /// Build the starting bytes prefilter. /// /// If there are more than 3 distinct starting bytes, or if heuristics /// otherwise determine that this prefilter should not be used, then `None` /// is returned. fn build(&self) -> Option<PrefilterObj> { if self.count > 3 { return None; } let (mut bytes, mut len) = ([0; 3], 0); for b in 0..256 { if !self.byteset[b] { continue; } // We don't handle non-ASCII bytes for now. Getting non-ASCII // bytes right is trickier, since we generally don't want to put // a leading UTF-8 code unit into a prefilter that isn't ASCII, // since they can frequently. Instead, it would be better to use a // continuation byte, but this requires more sophisticated analysis // of the automaton and a richer prefilter API. if b > 0x7F { return None; } bytes[len] = b as u8; len += 1; } match len { 0 => None, 1 => Some(PrefilterObj::new(StartBytesOne { byte1: bytes[0] })), 2 => Some(PrefilterObj::new(StartBytesTwo { byte1: bytes[0], byte2: bytes[1], })), 3 => Some(PrefilterObj::new(StartBytesThree { byte1: bytes[0], byte2: bytes[1], byte3: bytes[2], })), _ => unreachable!(), } } /// Add a byte string to this builder. /// /// All patterns added to an Aho-Corasick automaton should be added to this /// builder before attempting to construct the prefilter. fn add(&mut self, bytes: &[u8]) { if self.count > 3 { return; } if let Some(&byte) = bytes.get(0) { self.add_one_byte(byte); if self.ascii_case_insensitive { self.add_one_byte(opposite_ascii_case(byte)); } } } fn add_one_byte(&mut self, byte: u8) { if !self.byteset[byte as usize] { self.byteset[byte as usize] = true; self.count += 1; self.rank_sum += freq_rank(byte) as u16; } } } /// A prefilter for scanning for a single starting byte. #[derive(Clone, Debug)] struct StartBytesOne { byte1: u8, } impl Prefilter for StartBytesOne { fn next_candidate( &self, _state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr(self.byte1, &haystack[at..]) .map(|i| at + i) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// A prefilter for scanning for two starting bytes. #[derive(Clone, Debug)] struct StartBytesTwo { byte1: u8, byte2: u8, } impl Prefilter for StartBytesTwo { fn next_candidate( &self, _state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr2(self.byte1, self.byte2, &haystack[at..]) .map(|i| at + i) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// A prefilter for scanning for three starting bytes. #[derive(Clone, Debug)] struct StartBytesThree { byte1: u8, byte2: u8, byte3: u8, } impl Prefilter for StartBytesThree { fn next_candidate( &self, _state: &mut PrefilterState, haystack: &[u8], at: usize, ) -> Candidate { memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..]) .map(|i| at + i) .map_or(Candidate::None, Candidate::PossibleStartOfMatch) } fn clone_prefilter(&self) -> Box<dyn Prefilter> { Box::new(self.clone()) } fn heap_bytes(&self) -> usize { 0 } } /// Return the next candidate reported by the given prefilter while /// simultaneously updating the given prestate. /// /// The caller is responsible for checking the prestate before deciding whether /// to initiate a search. #[inline] pub fn next<P: Prefilter>( prestate: &mut PrefilterState, prefilter: P, haystack: &[u8], at: usize, ) -> Candidate { let cand = prefilter.next_candidate(prestate, haystack, at); match cand { Candidate::None => { prestate.update_skipped_bytes(haystack.len() - at); } Candidate::Match(ref m) => { prestate.update_skipped_bytes(m.start() - at); } Candidate::PossibleStartOfMatch(i) => { prestate.update_skipped_bytes(i - at); } } cand } /// If the given byte is an ASCII letter, then return it in the opposite case. /// e.g., Given `b'A'`, this returns `b'a'`, and given `b'a'`, this returns /// `b'A'`. If a non-ASCII letter is given, then the given byte is returned. pub fn opposite_ascii_case(b: u8) -> u8 { if b'A' <= b && b <= b'Z' { b.to_ascii_lowercase() } else if b'a' <= b && b <= b'z' { b.to_ascii_uppercase() } else { b } } /// Return the frequency rank of the given byte. The higher the rank, the more /// common the byte (heuristically speaking). fn freq_rank(b: u8) -> u8 { use byte_frequencies::BYTE_FREQUENCIES; BYTE_FREQUENCIES[b as usize] } #[cfg(test)] mod tests { use super::*; #[test] fn scratch() { let mut b = Builder::new(MatchKind::LeftmostFirst); b.add(b"Sherlock"); b.add(b"locjaw"); // b.add(b"Sherlock"); // b.add(b"Holmes"); // b.add(b"Watson"); // b.add("Шерлок Холмс".as_bytes()); // b.add("Джон Уотсон".as_bytes()); let s = b.build().unwrap(); println!("{:?}", s); } }