Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
use std::cmp;
use std::fmt;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::u8;

use memchr::{memchr, memchr2, memchr3};

use ahocorasick::MatchKind;
use packed;
use Match;

/// A candidate is the result of running a prefilter on a haystack at a
/// particular position. The result is either no match, a confirmed match or
/// a possible match.
///
/// When no match is returned, the prefilter is guaranteeing that no possible
/// match can be found in the haystack, and the caller may trust this. That is,
/// all correct prefilters must never report false negatives.
///
/// In some cases, a prefilter can confirm a match very quickly, in which case,
/// the caller may use this to stop what it's doing and report the match. In
/// this case, prefilter implementations must never report a false positive.
/// In other cases, the prefilter can only report a potential match, in which
/// case the callers must attempt to confirm the match. In this case, prefilter
/// implementations are permitted to return false positives.
#[derive(Clone, Debug)]
pub enum Candidate {
    None,
    Match(Match),
    PossibleStartOfMatch(usize),
}

impl Candidate {
    /// Convert this candidate into an option. This is useful when callers
    /// do not distinguish between true positives and false positives (i.e.,
    /// the caller must always confirm the match in order to update some other
    /// state).
    pub fn into_option(self) -> Option<usize> {
        match self {
            Candidate::None => None,
            Candidate::Match(ref m) => Some(m.start()),
            Candidate::PossibleStartOfMatch(start) => Some(start),
        }
    }
}

/// A prefilter describes the behavior of fast literal scanners for quickly
/// skipping past bytes in the haystack that we know cannot possibly
/// participate in a match.
pub trait Prefilter:
    Send + Sync + RefUnwindSafe + UnwindSafe + fmt::Debug
{
    /// Returns the next possible match candidate. This may yield false
    /// positives, so callers must confirm a match starting at the position
    /// returned. This, however, must never produce false negatives. That is,
    /// this must, at minimum, return the starting position of the next match
    /// in the given haystack after or at the given position.
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate;

    /// A method for cloning a prefilter, to work-around the fact that Clone
    /// is not object-safe.
    fn clone_prefilter(&self) -> Box<dyn Prefilter>;

    /// Returns the approximate total amount of heap used by this prefilter, in
    /// units of bytes.
    fn heap_bytes(&self) -> usize;

    /// Returns true if and only if this prefilter never returns false
    /// positives. This is useful for completely avoiding the automaton
    /// when the prefilter can quickly confirm its own matches.
    ///
    /// By default, this returns true, which is conservative; it is always
    /// correct to return `true`. Returning `false` here and reporting a false
    /// positive will result in incorrect searches.
    fn reports_false_positives(&self) -> bool {
        true
    }
}

impl<'a, P: Prefilter + ?Sized> Prefilter for &'a P {
    #[inline]
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        (**self).next_candidate(state, haystack, at)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        (**self).clone_prefilter()
    }

    fn heap_bytes(&self) -> usize {
        (**self).heap_bytes()
    }

    fn reports_false_positives(&self) -> bool {
        (**self).reports_false_positives()
    }
}

/// A convenience object for representing any type that implements Prefilter
/// and is cloneable.
#[derive(Debug)]
pub struct PrefilterObj(Box<dyn Prefilter>);

impl Clone for PrefilterObj {
    fn clone(&self) -> Self {
        PrefilterObj(self.0.clone_prefilter())
    }
}

impl PrefilterObj {
    /// Create a new prefilter object.
    pub fn new<T: Prefilter + 'static>(t: T) -> PrefilterObj {
        PrefilterObj(Box::new(t))
    }

    /// Return the underlying prefilter trait object.
    pub fn as_ref(&self) -> &dyn Prefilter {
        &*self.0
    }
}

/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator via, e.g., `find_iter`, is treated as a single search.)
#[derive(Clone, Debug)]
pub struct PrefilterState {
    /// The number of skips that has been executed.
    skips: usize,
    /// The total number of bytes that have been skipped.
    skipped: usize,
    /// The maximum length of a match. This is used to help determine how many
    /// bytes on average should be skipped in order for a prefilter to be
    /// effective.
    max_match_len: usize,
    /// Once this heuristic has been deemed permanently ineffective, it will be
    /// inert throughout the rest of its lifetime. This serves as a cheap way
    /// to check inertness.
    inert: bool,
    /// The last (absolute) position at which a prefilter scanned to.
    /// Prefilters can use this position to determine whether to re-scan or
    /// not.
    ///
    /// Unlike other things that impact effectiveness, this is a fleeting
    /// condition. That is, a prefilter can be considered ineffective if it is
    /// at a position before `last_scan_at`, but can become effective again
    /// once the search moves past `last_scan_at`.
    ///
    /// The utility of this is to both avoid additional overhead from calling
    /// the prefilter and to avoid quadratic behavior. This ensures that a
    /// prefilter will scan any particular byte at most once. (Note that some
    /// prefilters, like the start-byte prefilter, do not need to use this
    /// field at all, since it only looks for starting bytes.)
    last_scan_at: usize,
}

impl PrefilterState {
    /// The minimum number of skip attempts to try before considering whether
    /// a prefilter is effective or not.
    const MIN_SKIPS: usize = 40;

    /// The minimum amount of bytes that skipping must average, expressed as a
    /// factor of the multiple of the length of a possible match.
    ///
    /// That is, after MIN_SKIPS have occurred, if the average number of bytes
    /// skipped ever falls below MIN_AVG_FACTOR * max-match-length, then the
    /// prefilter outed to be rendered inert.
    const MIN_AVG_FACTOR: usize = 2;

    /// Create a fresh prefilter state.
    pub fn new(max_match_len: usize) -> PrefilterState {
        PrefilterState {
            skips: 0,
            skipped: 0,
            max_match_len,
            inert: false,
            last_scan_at: 0,
        }
    }

    /// Update this state with the number of bytes skipped on the last
    /// invocation of the prefilter.
    #[inline]
    fn update_skipped_bytes(&mut self, skipped: usize) {
        self.skips += 1;
        self.skipped += skipped;
    }

    /// Updates the position at which the last scan stopped. This may be
    /// greater than the position of the last candidate reported. For example,
    /// searching for the "rare" byte `z` in `abczdef` for the pattern `abcz`
    /// will report a candidate at position `0`, but the end of its last scan
    /// will be at position `3`.
    ///
    /// This position factors into the effectiveness of this prefilter. If the
    /// current position is less than the last position at which a scan ended,
    /// then the prefilter should not be re-run until the search moves past
    /// that position.
    #[inline]
    fn update_at(&mut self, at: usize) {
        if at > self.last_scan_at {
            self.last_scan_at = at;
        }
    }

    /// Return true if and only if this state indicates that a prefilter is
    /// still effective.
    ///
    /// The given pos should correspond to the current starting position of the
    /// search.
    #[inline]
    pub fn is_effective(&mut self, at: usize) -> bool {
        if self.inert {
            return false;
        }
        if at < self.last_scan_at {
            return false;
        }
        if self.skips < PrefilterState::MIN_SKIPS {
            return true;
        }

        let min_avg = PrefilterState::MIN_AVG_FACTOR * self.max_match_len;
        if self.skipped >= min_avg * self.skips {
            return true;
        }

        // We're inert.
        self.inert = true;
        false
    }
}

/// A builder for constructing the best possible prefilter. When constructed,
/// this builder will heuristically select the best prefilter it can build,
/// if any, and discard the rest.
#[derive(Debug)]
pub struct Builder {
    count: usize,
    ascii_case_insensitive: bool,
    start_bytes: StartBytesBuilder,
    rare_bytes: RareBytesBuilder,
    packed: Option<packed::Builder>,
}

impl Builder {
    /// Create a new builder for constructing the best possible prefilter.
    pub fn new(kind: MatchKind) -> Builder {
        let pbuilder = kind
            .as_packed()
            .map(|kind| packed::Config::new().match_kind(kind).builder());
        Builder {
            count: 0,
            ascii_case_insensitive: false,
            start_bytes: StartBytesBuilder::new(),
            rare_bytes: RareBytesBuilder::new(),
            packed: pbuilder,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    pub fn ascii_case_insensitive(mut self, yes: bool) -> Builder {
        self.ascii_case_insensitive = yes;
        self.start_bytes = self.start_bytes.ascii_case_insensitive(yes);
        self.rare_bytes = self.rare_bytes.ascii_case_insensitive(yes);
        self
    }

    /// Return a prefilter suitable for quickly finding potential matches.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    pub fn build(&self) -> Option<PrefilterObj> {
        match (self.start_bytes.build(), self.rare_bytes.build()) {
            // If we could build both start and rare prefilters, then there are
            // a few cases in which we'd want to use the start-byte prefilter
            // over the rare-byte prefilter, since the former has lower
            // overhead.
            (prestart @ Some(_), prerare @ Some(_)) => {
                // If the start-byte prefilter can scan for a smaller number
                // of bytes than the rare-byte prefilter, then it's probably
                // faster.
                let has_fewer_bytes =
                    self.start_bytes.count < self.rare_bytes.count;
                // Otherwise, if the combined frequency rank of the detected
                // bytes in the start-byte prefilter is "close" to the combined
                // frequency rank of the rare-byte prefilter, then we pick
                // the start-byte prefilter even if the rare-byte prefilter
                // heuristically searches for rare bytes. This is because the
                // rare-byte prefilter has higher constant costs, so we tend to
                // prefer the start-byte prefilter when we can.
                let has_rarer_bytes =
                    self.start_bytes.rank_sum <= self.rare_bytes.rank_sum + 50;
                if has_fewer_bytes || has_rarer_bytes {
                    prestart
                } else {
                    prerare
                }
            }
            (prestart @ Some(_), None) => prestart,
            (None, prerare @ Some(_)) => prerare,
            (None, None) if self.ascii_case_insensitive => None,
            (None, None) => self
                .packed
                .as_ref()
                .and_then(|b| b.build())
                .map(|s| PrefilterObj::new(Packed(s))),
        }
    }

    /// Add a literal string to this prefilter builder.
    pub fn add(&mut self, bytes: &[u8]) {
        self.count += 1;
        self.start_bytes.add(bytes);
        self.rare_bytes.add(bytes);
        if let Some(ref mut pbuilder) = self.packed {
            pbuilder.add(bytes);
        }
    }
}

/// A type that wraps a packed searcher and implements the `Prefilter`
/// interface.
#[derive(Clone, Debug)]
struct Packed(packed::Searcher);

impl Prefilter for Packed {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        self.0.find_at(haystack, at).map_or(Candidate::None, Candidate::Match)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        self.0.heap_bytes()
    }

    fn reports_false_positives(&self) -> bool {
        false
    }
}

/// A builder for constructing a rare byte prefilter.
///
/// A rare byte prefilter attempts to pick out a small set of rare bytes that
/// occurr in the patterns, and then quickly scan to matches of those rare
/// bytes.
#[derive(Clone, Debug)]
struct RareBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// A set of byte offsets associated with detected rare bytes. An entry is
    /// only set if a rare byte is detected in a pattern.
    byte_offsets: RareByteOffsets,
    /// Whether this is available as a prefilter or not. This can be set to
    /// false during construction if a condition is seen that invalidates the
    /// use of the rare-byte prefilter.
    available: bool,
    /// The number of bytes set to an active value in `byte_offsets`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

/// A set of rare byte offsets, keyed by byte.
#[derive(Clone, Copy)]
struct RareByteOffsets {
    /// When an item in this set has an offset of u8::MAX (255), then it is
    /// considered unset.
    set: [RareByteOffset; 256],
}

impl RareByteOffsets {
    /// Create a new empty set of rare byte offsets.
    pub fn empty() -> RareByteOffsets {
        RareByteOffsets { set: [RareByteOffset::default(); 256] }
    }

    /// Add the given offset for the given byte to this set. If the offset is
    /// greater than the existing offset, then it overwrites the previous
    /// value and returns false. If there is no previous value set, then this
    /// sets it and returns true.
    ///
    /// The given offset must be active, otherwise this panics.
    pub fn apply(&mut self, byte: u8, off: RareByteOffset) -> bool {
        assert!(off.is_active());

        let existing = &mut self.set[byte as usize];
        if !existing.is_active() {
            *existing = off;
            true
        } else {
            if existing.max < off.max {
                *existing = off;
            }
            false
        }
    }
}

impl fmt::Debug for RareByteOffsets {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut offsets = vec![];
        for off in self.set.iter() {
            if off.is_active() {
                offsets.push(off);
            }
        }
        f.debug_struct("RareByteOffsets").field("set", &offsets).finish()
    }
}

/// Offsets associated with an occurrence of a "rare" byte in any of the
/// patterns used to construct a single Aho-Corasick automaton.
#[derive(Clone, Copy, Debug)]
struct RareByteOffset {
    /// The maximum offset at which a particular byte occurs from the start
    /// of any pattern. This is used as a shift amount. That is, when an
    /// occurrence of this byte is found, the candidate position reported by
    /// the prefilter is `position_of_byte - max`, such that the automaton
    /// will begin its search at a position that is guaranteed to observe a
    /// match.
    ///
    /// To avoid accidentally quadratic behavior, a prefilter is considered
    /// ineffective when it is asked to start scanning from a position that it
    /// has already scanned past.
    ///
    /// N.B. The maximum value for this is 254. A value of 255 indicates that
    /// this is unused. If a rare byte is found at an offset of 255 or greater,
    /// then the rare-byte prefilter is disabled for simplicity.
    max: u8,
}

impl Default for RareByteOffset {
    fn default() -> RareByteOffset {
        RareByteOffset { max: u8::MAX }
    }
}

impl RareByteOffset {
    /// Create a new rare byte offset. If the given offset is too big, then
    /// an inactive `RareByteOffset` is returned.
    fn new(max: usize) -> RareByteOffset {
        if max > (u8::MAX - 1) as usize {
            RareByteOffset::default()
        } else {
            RareByteOffset { max: max as u8 }
        }
    }

    /// Returns true if and only if this offset is active. If it's inactive,
    /// then it should not be used.
    fn is_active(&self) -> bool {
        self.max < u8::MAX
    }
}

impl RareBytesBuilder {
    /// Create a new builder for constructing a rare byte prefilter.
    fn new() -> RareBytesBuilder {
        RareBytesBuilder {
            ascii_case_insensitive: false,
            byte_offsets: RareByteOffsets::empty(),
            available: true,
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> RareBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the rare bytes prefilter.
    ///
    /// If there are more than 3 distinct starting bytes, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<PrefilterObj> {
        if !self.available || self.count > 3 {
            return None;
        }
        let (mut bytes, mut len) = ([0; 3], 0);
        for b in 0..256 {
            if self.byte_offsets.set[b].is_active() {
                bytes[len] = b as u8;
                len += 1;
            }
        }
        match len {
            0 => None,
            1 => Some(PrefilterObj::new(RareBytesOne {
                byte1: bytes[0],
                offset: self.byte_offsets.set[bytes[0] as usize],
            })),
            2 => Some(PrefilterObj::new(RareBytesTwo {
                offsets: self.byte_offsets,
                byte1: bytes[0],
                byte2: bytes[1],
            })),
            3 => Some(PrefilterObj::new(RareBytesThree {
                offsets: self.byte_offsets,
                byte1: bytes[0],
                byte2: bytes[1],
                byte3: bytes[2],
            })),
            _ => unreachable!(),
        }
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        // If we've already blown our budget, then don't waste time looking
        // for more rare bytes.
        if self.count > 3 {
            self.available = false;
            return;
        }
        let mut rarest = match bytes.get(0) {
            None => return,
            Some(&b) => (b, 0, freq_rank(b)),
        };
        // The idea here is to look for the rarest byte in each pattern, and
        // add that to our set. As a special exception, if we see a byte that
        // we've already added, then we immediately stop and choose that byte,
        // even if there's another rare byte in the pattern. This helps us
        // apply the rare byte optimization in more cases by attempting to pick
        // bytes that are in common between patterns. So for example, if we
        // were searching for `Sherlock` and `lockjaw`, then this would pick
        // `k` for both patterns, resulting in the use of `memchr` instead of
        // `memchr2` for `k` and `j`.
        for (pos, &b) in bytes.iter().enumerate() {
            if self.byte_offsets.set[b as usize].is_active() {
                self.add_rare_byte(b, pos);
                return;
            }
            let rank = freq_rank(b);
            if rank < rarest.2 {
                rarest = (b, pos, rank);
            }
        }
        self.add_rare_byte(rarest.0, rarest.1);
    }

    fn add_rare_byte(&mut self, byte: u8, pos: usize) {
        self.add_one_byte(byte, pos);
        if self.ascii_case_insensitive {
            self.add_one_byte(opposite_ascii_case(byte), pos);
        }
    }

    fn add_one_byte(&mut self, byte: u8, pos: usize) {
        let off = RareByteOffset::new(pos);
        if !off.is_active() {
            self.available = false;
            return;
        }
        if self.byte_offsets.apply(byte, off) {
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single "rare" byte.
#[derive(Clone, Debug)]
struct RareBytesOne {
    byte1: u8,
    offset: RareByteOffset,
}

impl Prefilter for RareBytesOne {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr(self.byte1, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.last_scan_at = pos;
                cmp::max(at, pos.saturating_sub(self.offset.max as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for two "rare" bytes.
#[derive(Clone, Debug)]
struct RareBytesTwo {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
}

impl Prefilter for RareBytesTwo {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr2(self.byte1, self.byte2, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.update_at(pos);
                let offset = self.offsets.set[haystack[pos] as usize].max;
                cmp::max(at, pos.saturating_sub(offset as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for three "rare" bytes.
#[derive(Clone, Debug)]
struct RareBytesThree {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

impl Prefilter for RareBytesThree {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.update_at(pos);
                let offset = self.offsets.set[haystack[pos] as usize].max;
                cmp::max(at, pos.saturating_sub(offset as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A builder for constructing a starting byte prefilter.
///
/// A starting byte prefilter is a simplistic prefilter that looks for possible
/// matches by reporting all positions corresponding to a particular byte. This
/// generally only takes affect when there are at most 3 distinct possible
/// starting bytes. e.g., the patterns `foo`, `bar`, and `baz` have two
/// distinct starting bytes (`f` and `b`), and this prefiler returns all
/// occurrences of either `f` or `b`.
///
/// In some cases, a heuristic frequency analysis may determine that it would
/// be better not to use this prefilter even when there are 3 or fewer distinct
/// starting bytes.
#[derive(Clone, Debug)]
struct StartBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// The set of starting bytes observed.
    byteset: Vec<bool>,
    /// The number of bytes set to true in `byteset`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

impl StartBytesBuilder {
    /// Create a new builder for constructing a start byte prefilter.
    fn new() -> StartBytesBuilder {
        StartBytesBuilder {
            ascii_case_insensitive: false,
            byteset: vec![false; 256],
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> StartBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the starting bytes prefilter.
    ///
    /// If there are more than 3 distinct starting bytes, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<PrefilterObj> {
        if self.count > 3 {
            return None;
        }
        let (mut bytes, mut len) = ([0; 3], 0);
        for b in 0..256 {
            if !self.byteset[b] {
                continue;
            }
            // We don't handle non-ASCII bytes for now. Getting non-ASCII
            // bytes right is trickier, since we generally don't want to put
            // a leading UTF-8 code unit into a prefilter that isn't ASCII,
            // since they can frequently. Instead, it would be better to use a
            // continuation byte, but this requires more sophisticated analysis
            // of the automaton and a richer prefilter API.
            if b > 0x7F {
                return None;
            }
            bytes[len] = b as u8;
            len += 1;
        }
        match len {
            0 => None,
            1 => Some(PrefilterObj::new(StartBytesOne { byte1: bytes[0] })),
            2 => Some(PrefilterObj::new(StartBytesTwo {
                byte1: bytes[0],
                byte2: bytes[1],
            })),
            3 => Some(PrefilterObj::new(StartBytesThree {
                byte1: bytes[0],
                byte2: bytes[1],
                byte3: bytes[2],
            })),
            _ => unreachable!(),
        }
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        if self.count > 3 {
            return;
        }
        if let Some(&byte) = bytes.get(0) {
            self.add_one_byte(byte);
            if self.ascii_case_insensitive {
                self.add_one_byte(opposite_ascii_case(byte));
            }
        }
    }

    fn add_one_byte(&mut self, byte: u8) {
        if !self.byteset[byte as usize] {
            self.byteset[byte as usize] = true;
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single starting byte.
#[derive(Clone, Debug)]
struct StartBytesOne {
    byte1: u8,
}

impl Prefilter for StartBytesOne {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr(self.byte1, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for two starting bytes.
#[derive(Clone, Debug)]
struct StartBytesTwo {
    byte1: u8,
    byte2: u8,
}

impl Prefilter for StartBytesTwo {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr2(self.byte1, self.byte2, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for three starting bytes.
#[derive(Clone, Debug)]
struct StartBytesThree {
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

impl Prefilter for StartBytesThree {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// Return the next candidate reported by the given prefilter while
/// simultaneously updating the given prestate.
///
/// The caller is responsible for checking the prestate before deciding whether
/// to initiate a search.
#[inline]
pub fn next<P: Prefilter>(
    prestate: &mut PrefilterState,
    prefilter: P,
    haystack: &[u8],
    at: usize,
) -> Candidate {
    let cand = prefilter.next_candidate(prestate, haystack, at);
    match cand {
        Candidate::None => {
            prestate.update_skipped_bytes(haystack.len() - at);
        }
        Candidate::Match(ref m) => {
            prestate.update_skipped_bytes(m.start() - at);
        }
        Candidate::PossibleStartOfMatch(i) => {
            prestate.update_skipped_bytes(i - at);
        }
    }
    cand
}

/// If the given byte is an ASCII letter, then return it in the opposite case.
/// e.g., Given `b'A'`, this returns `b'a'`, and given `b'a'`, this returns
/// `b'A'`. If a non-ASCII letter is given, then the given byte is returned.
pub fn opposite_ascii_case(b: u8) -> u8 {
    if b'A' <= b && b <= b'Z' {
        b.to_ascii_lowercase()
    } else if b'a' <= b && b <= b'z' {
        b.to_ascii_uppercase()
    } else {
        b
    }
}

/// Return the frequency rank of the given byte. The higher the rank, the more
/// common the byte (heuristically speaking).
fn freq_rank(b: u8) -> u8 {
    use byte_frequencies::BYTE_FREQUENCIES;
    BYTE_FREQUENCIES[b as usize]
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn scratch() {
        let mut b = Builder::new(MatchKind::LeftmostFirst);
        b.add(b"Sherlock");
        b.add(b"locjaw");
        // b.add(b"Sherlock");
        // b.add(b"Holmes");
        // b.add(b"Watson");
        // b.add("Шерлок Холмс".as_bytes());
        // b.add("Джон Уотсон".as_bytes());

        let s = b.build().unwrap();
        println!("{:?}", s);
    }
}