1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#![deny(unsafe_code)] //! Abstracting over accessing parts of stored value. //! //! Sometimes, there's a big globalish data structure (like a configuration for the whole program). //! Then there are parts of the program that need access to up-to-date version of their *part* of //! the configuration, but for reasons of code separation and reusability, it is not desirable to //! pass the whole configuration to each of the parts. //! //! This module provides means to grant the parts access to the relevant subsets of such global //! data structure while masking the fact it is part of the bigger whole from the component. //! //! Note that the [`cache`][::cache] module has its own [`Access`][::cache::Access] trait that //! serves a similar purpose, but with cached access. The signatures are different, therefore an //! incompatible trait. //! //! # The general idea //! //! Each part of the code accepts generic [`Access<T>`][Access] for the `T` of its interest. This //! provides means to load current version of the structure behind the scenes and get only the //! relevant part, without knowing what the big structure is. //! //! For technical reasons, the [`Access`] trait is not object safe. If type erasure is desired, it //! is possible use the [`DynAccess`][::access::DynAccess] instead, which is object safe, but //! slightly slower. //! //! For some cases, it is possible to use [`ArcSwapAny::map`]. If that is not flexible enough, the //! [`Map`] type can be created directly. //! //! Note that the [`Access`] trait is also implemented for [`ArcSwapAny`] itself. Additionally, //! there's the [`Constant`][::access::Constant] helper type, which is useful mostly for testing //! (it doesn't allow reloading). //! //! # Performance //! //! In general, these utilities use [`ArcSwapAny::load`] internally and then apply the provided //! transformation. This has several consequences: //! //! * Limitations of the [`load`][ArcSwapAny::load] apply ‒ including the recommendation to not //! hold the returned guard object for too long, but long enough to get consistency. //! * The transformation should be cheap ‒ optimally just borrowing into the structure. //! //! # Examples //! //! ```rust //! extern crate arc_swap; //! //! use std::sync::Arc; //! use std::thread; //! use std::time::Duration; //! //! use arc_swap::ArcSwap; //! use arc_swap::access::{Access, Constant, Map}; //! //! fn work_with_usize<A: Access<usize> + Send + 'static>(a: A) { //! thread::spawn(move || { //! loop { //! let value = a.load(); //! println!("{}", *value); //! // Not strictly necessary, but dropping the guard can free some resources, like //! // slots for tracking what values are still in use. We do it before the sleeping, //! // not at the end of the scope. //! drop(value); //! thread::sleep(Duration::from_millis(50)); //! } //! }); //! } //! //! // Passing the whole thing directly //! // (If we kept another Arc to it, we could change the value behind the scenes) //! work_with_usize(Arc::new(ArcSwap::from_pointee(42))); //! //! // Passing a subset of a structure //! struct Cfg { //! value: usize, //! } //! //! let cfg = Arc::new(ArcSwap::from_pointee(Cfg { value: 0 })); //! work_with_usize(Map::new(Arc::clone(&cfg), |cfg: &Cfg| &cfg.value)); //! cfg.store(Arc::new(Cfg { value: 42 })); //! //! // Passing a constant that can't change. Useful mostly for testing purposes. //! work_with_usize(Constant(42)); //! ``` use std::marker::PhantomData; use std::ops::Deref; use std::rc::Rc; use std::sync::Arc; use super::gen_lock::LockStorage; use super::ref_cnt::RefCnt; use super::{ArcSwapAny, Guard}; /// Abstracts over ways code can get access to a value of type `T`. /// /// This is the trait that parts of code will use when accessing a subpart of the big data /// structure. See the [module documentation](index.html) for details. pub trait Access<T> { /// A guard object containing the value and keeping it alive. /// /// For technical reasons, the library doesn't allow direct access into the stored value. A /// temporary guard object must be loaded, that keeps the actual value alive for the time of /// use. type Guard: Deref<Target = T>; /// The loading method. /// /// This returns the guard that holds the actual value. Should be called anew each time a fresh /// value is needed. fn load(&self) -> Self::Guard; } impl<T, A: Access<T>, P: Deref<Target = A>> Access<T> for P { type Guard = A::Guard; fn load(&self) -> Self::Guard { self.deref().load() } } impl<T: RefCnt, S: LockStorage> Access<T> for ArcSwapAny<T, S> { type Guard = Guard<'static, T>; fn load(&self) -> Self::Guard { self.load() } } /// Plumbing type. /// /// Accessible, but not expected to be used directly in general. #[derive(Debug)] pub struct DirectDeref<T: RefCnt>(Guard<'static, T>); impl<T> Deref for DirectDeref<Arc<T>> { type Target = T; fn deref(&self) -> &T { self.0.deref().deref() } } impl<T, S: LockStorage> Access<T> for ArcSwapAny<Arc<T>, S> { type Guard = DirectDeref<Arc<T>>; fn load(&self) -> Self::Guard { DirectDeref(self.load()) } } impl<T> Deref for DirectDeref<Rc<T>> { type Target = T; fn deref(&self) -> &T { self.0.deref().deref() } } impl<T, S: LockStorage> Access<T> for ArcSwapAny<Rc<T>, S> { type Guard = DirectDeref<Rc<T>>; fn load(&self) -> Self::Guard { DirectDeref(self.load()) } } /// Plumbing type. /// /// This is the guard of [`DynAccess`] trait. It is effectively `Box<Deref<Target = T>>`. pub struct DynGuard<T: ?Sized>(Box<Deref<Target = T>>); impl<T: ?Sized> Deref for DynGuard<T> { type Target = T; fn deref(&self) -> &T { &self.0 } } /// An object-safe version of the [`Access`] trait. /// /// This can be used instead of the [`Access`] trait in case a type erasure is desired. This has /// the effect of performance hit (due to boxing of the result and due to dynamic dispatch), but /// makes certain code simpler and possibly makes the executable smaller. /// /// This is automatically implemented for everything that implements [`Access`]. /// /// # Examples /// /// ```rust /// extern crate arc_swap; /// /// use std::thread; /// /// use arc_swap::access::{Constant, DynAccess}; /// /// fn do_something(value: Box<dyn DynAccess<usize> + Send>) { /// thread::spawn(move || { /// let v = value.load(); /// println!("{}", *v); /// }); /// } /// /// do_something(Box::new(Constant(42))); /// ``` pub trait DynAccess<T> { /// The equivalent of [`Access::load`]. fn load(&self) -> DynGuard<T>; } impl<T, A> DynAccess<T> for A where A: Access<T>, A::Guard: 'static, { fn load(&self) -> DynGuard<T> { DynGuard(Box::new(Access::load(self))) } } /// A plumbing type. /// /// This is the guard type for [`Map`]. It is accessible and nameable, but is not expected to be /// generally used directly. #[derive(Copy, Clone, Debug)] pub struct MapGuard<G, F, T, R> { guard: G, projection: F, _t: PhantomData<fn(&T) -> &R>, } impl<G, F, T, R> Deref for MapGuard<G, F, T, R> where G: Deref<Target = T>, F: Fn(&T) -> &R, { type Target = R; fn deref(&self) -> &R { (self.projection)(&self.guard) } } /// An adaptor to provide access to a part of larger structure. /// /// This is the *active* part of this module. Use the [module documentation](index.html) for the /// details. #[derive(Copy, Clone, Debug)] pub struct Map<A, T, F> { access: A, projection: F, _t: PhantomData<fn() -> T>, } impl<A, T, F> Map<A, T, F> { /// Creates a new instance. /// /// # Parameters /// /// * `access`: Access to the bigger structure. This is usually something like `Arc<ArcSwap>` /// or `&ArcSwap`. It is technically possible to use any other [`Access`] here, though, for /// example to sub-delegate into even smaller structure from a [`Map`] (or generic /// [`Access`]). /// * `projection`: A function (or closure) responsible to providing a reference into the /// bigger bigger structure, selecting just subset of it. In general, it is expected to be /// *cheap* (like only taking reference). pub fn new<R>(access: A, projection: F) -> Self where F: Fn(&T) -> &R + Clone, { Map { access, projection, _t: PhantomData, } } } impl<A, F, T, R> Access<R> for Map<A, T, F> where A: Access<T>, F: Fn(&T) -> &R + Clone, { type Guard = MapGuard<A::Guard, F, T, R>; fn load(&self) -> Self::Guard { let guard = self.access.load(); MapGuard { guard, projection: self.projection.clone(), _t: PhantomData, } } } /// A plumbing type. /// /// This is the guard type for [`Constant`]. It is accessible, but is not expected to be generally /// used directly. #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct ConstantDeref<T>(T); impl<T> Deref for ConstantDeref<T> { type Target = T; fn deref(&self) -> &T { &self.0 } } /// Access to an constant. /// /// This wraps a constant value to provide [`Access`] to it. It is constant in the sense that, /// unlike [`ArcSwapAny`] and [`Map`], the loaded value will always stay the same (there's no /// remote `store`). /// /// The purpose is mostly testing and plugging a parameter that works generically from code that /// doesn't need the updating functionality. #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct Constant<T>(pub T); impl<T: Clone> Access<T> for Constant<T> { type Guard = ConstantDeref<T>; fn load(&self) -> Self::Guard { ConstantDeref(self.0.clone()) } } #[cfg(test)] mod tests { use super::super::{ArcSwap, ArcSwapOption}; use super::*; fn check_static_dispatch_direct<A: Access<usize>>(a: A) { assert_eq!(42, *a.load()); } fn check_static_dispatch<A: Access<Arc<usize>>>(a: A) { assert_eq!(42, **a.load()); } /// Tests dispatching statically from arc-swap works #[test] fn static_dispatch() { let a = ArcSwap::from_pointee(42); check_static_dispatch_direct(&a); check_static_dispatch(&a); check_static_dispatch(a); } fn check_dyn_dispatch_direct(a: &DynAccess<usize>) { assert_eq!(42, *a.load()); } fn check_dyn_dispatch(a: &DynAccess<Arc<usize>>) { assert_eq!(42, **a.load()); } /// Tests we can also do a dynamic dispatch of the companion trait #[test] fn dyn_dispatch() { let a = ArcSwap::from_pointee(42); check_dyn_dispatch_direct(&a); check_dyn_dispatch(&a); } fn check_transition<A>(a: A) where A: Access<usize>, A::Guard: 'static, { check_dyn_dispatch_direct(&a) } /// Tests we can easily transition from the static dispatch trait to the dynamic one #[test] fn transition() { let a = ArcSwap::from_pointee(42); check_transition(&a); check_transition(a); } /// Test we can dispatch from Arc<ArcSwap<_>> or similar. #[test] fn indirect() { let a = Arc::new(ArcSwap::from_pointee(42)); check_static_dispatch(&a); check_dyn_dispatch(&a); } struct Cfg { value: usize, } #[test] fn map() { let a = ArcSwap::from_pointee(Cfg { value: 42 }); let map = a.map(|a: &Cfg| &a.value); check_static_dispatch_direct(&map); check_dyn_dispatch_direct(&map); } #[test] fn map_option_some() { let a = ArcSwapOption::from_pointee(Cfg { value: 42 }); let map = a.map(|a: &Option<Arc<Cfg>>| a.as_ref().map(|c| &c.value).unwrap()); check_static_dispatch_direct(&map); check_dyn_dispatch_direct(&map); } #[test] fn map_option_none() { let a = ArcSwapOption::empty(); let map = a.map(|a: &Option<Arc<Cfg>>| a.as_ref().map(|c| &c.value).unwrap_or(&42)); check_static_dispatch_direct(&map); check_dyn_dispatch_direct(&map); } #[test] fn constant() { let c = Constant(42); check_static_dispatch_direct(&c); check_dyn_dispatch_direct(&c); check_static_dispatch_direct(c); } #[test] fn map_reload() { let a = ArcSwap::from_pointee(Cfg { value: 0 }); let map = a.map(|cfg: &Cfg| &cfg.value); assert_eq!(0, *Access::load(&map)); a.store(Arc::new(Cfg { value: 42 })); assert_eq!(42, *Access::load(&map)); } }