Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

//! gRPC C Core binds a call to a completion queue, all the related readiness
//! will be forwarded to the completion queue. This module utilizes the mechanism
//! and using `Kicker` to wake up completion queue.
//!
//! Apparently, to minimize context switch, it's better to bind the future to the
//! same completion queue as its inner call. Hence method `Executor::spawn` is provided.

use std::cell::UnsafeCell;
use std::pin::Pin;
use std::sync::atomic::{AtomicU8, Ordering};
use std::sync::Arc;

use futures::future::Future;
use futures::task::{waker_ref, ArcWake, Context, Poll};

use super::CallTag;
use crate::call::Call;
use crate::cq::{CompletionQueue, WorkQueue};
use crate::error::{Error, Result};
use crate::grpc_sys::{self, grpc_call_error};

/// A handle to a `Spawn`.
/// Inner future is expected to be polled in the same thread as cq.
type SpawnHandle = Pin<Box<dyn Future<Output = ()> + Send + 'static>>;

/// `Kicker` wakes up the completion queue that the inner call binds to.
pub(crate) struct Kicker {
    call: Call,
}

impl Kicker {
    pub fn from_call(call: Call) -> Kicker {
        Kicker { call }
    }

    /// Wakes up its completion queue.
    ///
    /// `tag` will be popped by `grpc_completion_queue_next` in the future.
    pub fn kick(&self, tag: Box<CallTag>) -> Result<()> {
        let _ref = self.call.cq.borrow()?;
        unsafe {
            let ptr = Box::into_raw(tag);
            let status = grpc_sys::grpcwrap_call_kick_completion_queue(self.call.call, ptr as _);
            if status == grpc_call_error::GRPC_CALL_OK {
                Ok(())
            } else {
                Err(Error::CallFailure(status))
            }
        }
    }
}

unsafe impl Sync for Kicker {}

impl Clone for Kicker {
    fn clone(&self) -> Kicker {
        // Bump call's reference count.
        let call = unsafe {
            grpc_sys::grpc_call_ref(self.call.call);
            self.call.call
        };
        let cq = self.call.cq.clone();
        Kicker {
            call: Call { call, cq },
        }
    }
}

/// When a future is scheduled, it becomes IDLE. When it's ready to be polled,
/// it will be notified via task.wake(), and marked as NOTIFIED. When executor
/// begins to poll the future, it's marked as POLLING. When the executor finishes
/// polling, the future can either be ready or not ready. In the former case, it's
/// marked as COMPLETED. If it's latter, it's marked as IDLE again.
///
/// Note it's possible the future is notified during polling, in which case, executor
/// should polling it when last polling is finished unless it returns ready.
const NOTIFIED: u8 = 1;
const IDLE: u8 = 2;
const POLLING: u8 = 3;
const COMPLETED: u8 = 4;

/// Maintains the spawned future with state, so that it can be notified and polled efficiently.
pub struct SpawnTask {
    handle: UnsafeCell<Option<SpawnHandle>>,
    state: AtomicU8,
    kicker: Kicker,
    queue: Arc<WorkQueue>,
}

/// `SpawnTask` access is guarded by `state` field, which guarantees Sync.
///
/// Sync is required by `ArcWake`.
unsafe impl Sync for SpawnTask {}

impl SpawnTask {
    fn new(s: SpawnHandle, kicker: Kicker, queue: Arc<WorkQueue>) -> SpawnTask {
        SpawnTask {
            handle: UnsafeCell::new(Some(s)),
            state: AtomicU8::new(IDLE),
            kicker,
            queue,
        }
    }

    /// Marks the state of this task to NOTIFIED.
    ///
    /// Returns true means the task was IDLE, needs to be scheduled.
    fn mark_notified(&self) -> bool {
        loop {
            match self.state.compare_exchange_weak(
                IDLE,
                NOTIFIED,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => return true,
                Err(POLLING) => match self.state.compare_exchange_weak(
                    POLLING,
                    NOTIFIED,
                    Ordering::AcqRel,
                    Ordering::Acquire,
                ) {
                    Err(IDLE) | Err(POLLING) => continue,
                    // If it succeeds, then executor will poll the future again;
                    // if it fails, then the future should be resolved. In both
                    // cases, no need to notify the future, hence return false.
                    _ => return false,
                },
                Err(IDLE) => continue,
                _ => return false,
            }
        }
    }
}

pub fn resolve(task: Arc<SpawnTask>, success: bool) {
    // it should always be canceled for now.
    assert!(success);
    poll(task, true);
}

/// A custom Waker.
///
/// It will push the inner future to work_queue if it's notified on the
/// same thread as inner cq.
impl ArcWake for SpawnTask {
    fn wake_by_ref(task: &Arc<Self>) {
        if !task.mark_notified() {
            return;
        }

        // It can lead to deadlock if poll the future immediately. So we need to
        // defer the work instead.
        if let Some(UnfinishedWork(w)) = task.queue.push_work(UnfinishedWork(task.clone())) {
            match task.kicker.kick(Box::new(CallTag::Spawn(w))) {
                // If the queue is shutdown, then the tag will be notified
                // eventually. So just skip here.
                Err(Error::QueueShutdown) => (),
                Err(e) => panic!("unexpected error when canceling call: {:?}", e),
                _ => (),
            }
        }
    }
}

/// Work that should be deferred to be handled.
///
/// Sometimes a work can't be done immediately as it might lead
/// to resource conflict, deadlock for example. So they will be
/// pushed into a queue and handled when current work is done.
pub struct UnfinishedWork(Arc<SpawnTask>);

impl UnfinishedWork {
    pub fn finish(self) {
        resolve(self.0, true);
    }
}

/// Poll the future.
///
/// `woken` indicates that if the cq is waken up by itself.
fn poll(task: Arc<SpawnTask>, woken: bool) {
    let mut init_state = if woken { NOTIFIED } else { IDLE };
    // TODO: maybe we need to break the loop to avoid hunger.
    loop {
        match task
            .state
            .compare_exchange(init_state, POLLING, Ordering::AcqRel, Ordering::Acquire)
        {
            Ok(_) => {}
            Err(COMPLETED) => return,
            Err(s) => panic!("unexpected state {}", s),
        }

        let waker = waker_ref(&task);
        let mut cx = Context::from_waker(&waker);

        // L208 "lock"s state, hence it's safe to get a mutable reference.
        match unsafe { &mut *task.handle.get() }
            .as_mut()
            .unwrap()
            .as_mut()
            .poll(&mut cx)
        {
            Poll::Ready(()) => {
                task.state.store(COMPLETED, Ordering::Release);
                unsafe { &mut *task.handle.get() }.take();
            }
            _ => {
                match task.state.compare_exchange(
                    POLLING,
                    IDLE,
                    Ordering::AcqRel,
                    Ordering::Acquire,
                ) {
                    Ok(_) => return,
                    Err(NOTIFIED) => {
                        init_state = NOTIFIED;
                    }
                    Err(s) => panic!("unexpected state {}", s),
                }
            }
        }
    }
}

/// An executor that drives a future in the gRPC poll thread, which
/// can reduce thread context switching.
pub(crate) struct Executor<'a> {
    cq: &'a CompletionQueue,
}

impl<'a> Executor<'a> {
    pub fn new(cq: &CompletionQueue) -> Executor<'_> {
        Executor { cq }
    }

    pub fn cq(&self) -> &CompletionQueue {
        self.cq
    }

    /// Spawn the future into inner poll loop.
    ///
    /// If you want to trace the future, you may need to create a sender/receiver
    /// pair by yourself.
    pub fn spawn<F>(&self, f: F, kicker: Kicker)
    where
        F: Future<Output = ()> + Send + 'static,
    {
        let s = Box::pin(f);
        let notify = Arc::new(SpawnTask::new(s, kicker, self.cq.worker.clone()));
        poll(notify, false)
    }
}