1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
use crate::common::{cidr_parts, parse_prefix, IpNetworkError};
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use std::{cmp, fmt, net::Ipv6Addr, str::FromStr};

const IPV6_BITS: u8 = 128;
const IPV6_SEGMENT_BITS: u8 = 16;

/// Represents a network range where the IP addresses are of v6
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Ipv6Network {
    addr: Ipv6Addr,
    prefix: u8,
}

impl<'de> Deserialize<'de> for Ipv6Network {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        let s = <String>::deserialize(deserializer)?;
        Ipv6Network::from_str(&s).map_err(de::Error::custom)
    }
}

impl Serialize for Ipv6Network {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        serializer.serialize_str(&self.to_string())
    }
}

impl Ipv6Network {
    /// Constructs a new `Ipv6Network` from any `Ipv6Addr` and a prefix denoting the network size.
    /// If the prefix is larger than 128 this will return an `IpNetworkError::InvalidPrefix`.
    pub fn new(addr: Ipv6Addr, prefix: u8) -> Result<Ipv6Network, IpNetworkError> {
        if prefix > IPV6_BITS {
            Err(IpNetworkError::InvalidPrefix)
        } else {
            Ok(Ipv6Network { addr, prefix })
        }
    }

    /// Returns an iterator over `Ipv6Network`. Each call to `next` will return the next
    /// `Ipv6Addr` in the given network. `None` will be returned when there are no more
    /// addresses.
    pub fn iter(&self) -> Ipv6NetworkIterator {
        let dec = u128::from(self.addr);
        let max = u128::max_value();
        let prefix = self.prefix;

        let mask = max.checked_shl(u32::from(IPV6_BITS - prefix)).unwrap_or(0);
        let start: u128 = dec & mask;

        let mask = max.checked_shr(u32::from(prefix)).unwrap_or(0);
        let end: u128 = dec | mask;

        Ipv6NetworkIterator {
            next: start,
            end: end,
        }
    }

    /// Returns the address of the network denoted by this `Ipv6Network`.
    /// This means the lowest possible IPv6 address inside of the network.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "2001:db8::/96".parse().unwrap();
    /// assert_eq!(net.network(), Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0));
    /// ```
    pub fn network(&self) -> Ipv6Addr {
        let mask = u128::from(self.mask());
        let ip = u128::from(self.addr) & mask;
        Ipv6Addr::from(ip)
    }

    /// Returns the broadcast address of this `Ipv6Network`.
    /// This means the highest possible IPv4 address inside of the network.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "2001:db8::/96".parse().unwrap();
    /// assert_eq!(net.broadcast(), Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0xffff, 0xffff));
    /// ```
    pub fn broadcast(&self) -> Ipv6Addr {
        let mask = u128::from(self.mask());
        let broadcast = u128::from(self.addr) | !mask;
        Ipv6Addr::from(broadcast)
    }

    pub fn ip(&self) -> Ipv6Addr {
        self.addr
    }

    pub fn prefix(&self) -> u8 {
        self.prefix
    }

    /// Checks if the given `Ipv6Network` is a subnet of the other.
    pub fn is_subnet_of(self, other: Ipv6Network) -> bool {
        other.ip() <= self.ip() && other.broadcast() >= self.broadcast()
    }

    /// Checks if the given `Ipv6Network` is a supernet of the other.
    pub fn is_supernet_of(self, other: Ipv6Network) -> bool {
        other.is_subnet_of(self)
    }

    /// Checks if the given `Ipv6Network` is partly contained in other.
    pub fn overlaps(self, other: Ipv6Network) -> bool {
        other.contains(self.ip()) || (
            other.contains(self.broadcast()) || (
                self.contains(other.ip()) || (
                    self.contains(other.broadcast())
                )
            )
        )
    }

    /// Returns the mask for this `Ipv6Network`.
    /// That means the `prefix` most significant bits will be 1 and the rest 0
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "ff01::0".parse().unwrap();
    /// assert_eq!(net.mask(), Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff));
    /// let net: Ipv6Network = "ff01::0/32".parse().unwrap();
    /// assert_eq!(net.mask(), Ipv6Addr::new(0xffff, 0xffff, 0, 0, 0, 0, 0, 0));
    /// ```
    pub fn mask(&self) -> Ipv6Addr {
        // Ipv6Addr::from is only implemented for [u8; 16]
        let mut segments = [0; 16];
        for (i, segment) in segments.iter_mut().enumerate() {
            let bits_remaining = self.prefix.saturating_sub(i as u8 * 8);
            let set_bits = cmp::min(bits_remaining, 8);
            *segment = !(0xff as u16 >> set_bits) as u8;
        }
        Ipv6Addr::from(segments)
    }

    /// Checks if a given `Ipv6Addr` is in this `Ipv6Network`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "ff01::0/32".parse().unwrap();
    /// assert!(net.contains(Ipv6Addr::new(0xff01, 0, 0, 0, 0, 0, 0, 0x1)));
    /// assert!(!net.contains(Ipv6Addr::new(0xffff, 0, 0, 0, 0, 0, 0, 0x1)));
    /// ```
    pub fn contains(&self, ip: Ipv6Addr) -> bool {
        let a = self.addr.segments();
        let b = ip.segments();
        let addrs = Iterator::zip(a.iter(), b.iter());
        self.mask()
            .segments()
            .iter()
            .zip(addrs)
            .all(|(mask, (a, b))| a & mask == b & mask)
    }

    /// Returns number of possible host addresses in this `Ipv6Network`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv6Addr;
    /// use ipnetwork::Ipv6Network;
    ///
    /// let net: Ipv6Network = "ff01::0/32".parse().unwrap();
    /// assert_eq!(net.size(), 79228162514264337593543950336);
    ///
    /// let tinynet: Ipv6Network = "ff01::0/128".parse().unwrap();
    /// assert_eq!(tinynet.size(), 1);
    /// ```
    pub fn size(&self) -> u128 {
        let host_bits = u32::from(IPV6_BITS - self.prefix);
        (2 as u128).pow(host_bits)
    }
}

impl FromStr for Ipv6Network {
    type Err = IpNetworkError;
    fn from_str(s: &str) -> Result<Ipv6Network, IpNetworkError> {
        let (addr_str, prefix_str) = cidr_parts(s)?;
        let addr = Ipv6Addr::from_str(addr_str)
            .map_err(|_| IpNetworkError::InvalidAddr(addr_str.to_string()))?;
        let prefix = match prefix_str {
            Some(v) => parse_prefix(v, IPV6_BITS)?,
            None => IPV6_BITS,
        };
        Ipv6Network::new(addr, prefix)
    }
}

impl From<Ipv6Addr> for Ipv6Network {
    fn from(a: Ipv6Addr) -> Ipv6Network {
        Ipv6Network {
            addr: a,
            prefix: 128,
        }
    }
}

pub struct Ipv6NetworkIterator {
    next: u128,
    end: u128,
}

impl Iterator for Ipv6NetworkIterator {
    type Item = Ipv6Addr;

    fn next(&mut self) -> Option<Ipv6Addr> {
        if self.next <= self.end {
            let next = Ipv6Addr::from(self.next);
            self.next += 1;
            Some(next)
        } else {
            None
        }
    }
}

impl fmt::Display for Ipv6Network {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}/{}", self.ip(), self.prefix())
    }
}

/// Converts a `Ipv6Addr` network mask into a prefix.
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
pub fn ipv6_mask_to_prefix(mask: Ipv6Addr) -> Result<u8, IpNetworkError> {
    let mask = mask.segments();
    let mut mask_iter = mask.iter();

    // Count the number of set bits from the start of the address
    let mut prefix = 0;
    for &segment in &mut mask_iter {
        if segment == 0xffff {
            prefix += IPV6_SEGMENT_BITS;
        } else if segment == 0 {
            // Prefix finishes on a segment boundary
            break;
        } else {
            let prefix_bits = (!segment).leading_zeros() as u8;
            // Check that the remainder of the bits are all unset
            if segment << prefix_bits != 0 {
                return Err(IpNetworkError::InvalidPrefix);
            }
            prefix += prefix_bits;
            break;
        }
    }

    // Now check all the remaining bits are unset
    for &segment in mask_iter {
        if segment != 0 {
            return Err(IpNetworkError::InvalidPrefix);
        }
    }

    Ok(prefix)
}

#[cfg(test)]
mod test {
    use super::*;
    use std::collections::HashMap;
    use std::net::Ipv6Addr;

    #[test]
    fn create_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 24).unwrap();
        assert_eq!(cidr.prefix(), 24);
    }

    #[test]
    fn create_v6_invalid_prefix() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 129);
        assert!(cidr.is_err());
    }

    #[test]
    fn parse_v6() {
        let cidr: Ipv6Network = "::1/0".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
        assert_eq!(cidr.prefix(), 0);
    }

    #[test]
    fn parse_v6_2() {
        let cidr: Ipv6Network = "FF01:0:0:17:0:0:0:2/64".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2));
        assert_eq!(cidr.prefix(), 64);
    }

    #[test]
    fn parse_v6_noprefix() {
        let cidr: Ipv6Network = "::1".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
        assert_eq!(cidr.prefix(), 128);
    }

    #[test]
    fn parse_v6_fail_addr() {
        let cidr: Option<Ipv6Network> = "2001::1::/8".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v6_fail_prefix() {
        let cidr: Option<Ipv6Network> = "::1/129".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v6_fail_two_slashes() {
        let cidr: Option<Ipv6Network> = "::1/24/".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn mask_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 40).unwrap();
        let mask = cidr.mask();
        assert_eq!(mask, Ipv6Addr::new(0xffff, 0xffff, 0xff00, 0, 0, 0, 0, 0));
    }

    #[test]
    fn contains_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2), 65).unwrap();
        let ip = Ipv6Addr::new(0xff01, 0, 0, 0x17, 0x7fff, 0, 0, 0x2);
        assert!(cidr.contains(ip));
    }

    #[test]
    fn not_contains_v6() {
        let cidr = Ipv6Network::new(Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2), 65).unwrap();
        let ip = Ipv6Addr::new(0xff01, 0, 0, 0x17, 0xffff, 0, 0, 0x2);
        assert!(!cidr.contains(ip));
    }

    #[test]
    fn v6_mask_to_prefix() {
        let mask = Ipv6Addr::new(0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0);
        let prefix = ipv6_mask_to_prefix(mask).unwrap();
        assert_eq!(prefix, 48);
    }

    #[test]
    fn invalid_v6_mask_to_prefix() {
        let mask = Ipv6Addr::new(0, 0, 0xffff, 0xffff, 0, 0, 0, 0);
        let prefix = ipv6_mask_to_prefix(mask);
        assert!(prefix.is_err());
    }

    #[test]
    fn iterator_v6() {
        let cidr: Ipv6Network = "2001:db8::/126".parse().unwrap();
        let mut iter = cidr.iter();
        assert_eq!(
            Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0),
            iter.next().unwrap()
        );
        assert_eq!(
            Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1),
            iter.next().unwrap()
        );
        assert_eq!(
            Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 2),
            iter.next().unwrap()
        );
        assert_eq!(
            Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 3),
            iter.next().unwrap()
        );
        assert_eq!(None, iter.next());
    }

    #[test]
    fn iterator_v6_tiny() {
        let cidr: Ipv6Network = "2001:db8::/128".parse().unwrap();
        let mut iter = cidr.iter();
        assert_eq!(
            Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0),
            iter.next().unwrap()
        );
        assert_eq!(None, iter.next());
    }

    #[test]
    fn iterator_v6_huge() {
        let cidr: Ipv6Network = "2001:db8::/0".parse().unwrap();
        let mut iter = cidr.iter();
        assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), iter.next().unwrap());
        assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), iter.next().unwrap());
        assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 2), iter.next().unwrap());
    }

    #[test]
    fn network_v6() {
        let cidr: Ipv6Network = "2001:db8::0/96".parse().unwrap();
        let net = cidr.network();
        let expected: Ipv6Addr = "2001:db8::".parse().unwrap();
        assert_eq!(net, expected);
    }

    #[test]
    fn broadcast_v6() {
        let cidr: Ipv6Network = "2001:db8::0/96".parse().unwrap();
        let net = cidr.broadcast();
        let expected: Ipv6Addr = "2001:db8::ffff:ffff".parse().unwrap();
        assert_eq!(net, expected);
    }

    #[test]
    fn size_v6() {
        let cidr: Ipv6Network = "2001:db8::0/96".parse().unwrap();
        assert_eq!(cidr.size(), 4294967296);
    }

    #[test]
    fn ipv6network_from_ipv6addr() {
        let net = Ipv6Network::from(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
        let expected = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 128).unwrap();
        assert_eq!(net, expected);
    }

    #[test]
    fn test_send() {
        fn assert_send<T: Send>() {}
        assert_send::<Ipv6Network>();
    }

    #[test]
    fn test_sync() {
        fn assert_sync<T: Sync>() {}
        assert_sync::<Ipv6Network>();
    }

    // Tests from cpython https://github.com/python/cpython/blob/e9bc4172d18db9c182d8e04dd7b033097a994c06/Lib/test/test_ipaddress.py
    #[test]
    fn test_is_subnet_of() {
        let mut test_cases: HashMap<(Ipv6Network, Ipv6Network), bool> = HashMap::new();

        test_cases.insert(("2000:999::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), false);
        test_cases.insert(("2000:aaa::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), true);
        test_cases.insert(("2000:bbb::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), false);
        test_cases.insert(("2000:aaa::/48".parse().unwrap(), "2000:aaa::/56".parse().unwrap()), false);

        for (key, val) in test_cases.iter() {
            let (src, dest) = (key.0, key.1);
            assert_eq!(src.is_subnet_of(dest), *val, "testing with {} and {}", src, dest);
        }
    }

    #[test]
    fn test_is_supernet_of() {
        let mut test_cases: HashMap<(Ipv6Network, Ipv6Network), bool> = HashMap::new();

        test_cases.insert(("2000:999::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), false);
        test_cases.insert(("2000:aaa::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), false);
        test_cases.insert(("2000:bbb::/56".parse().unwrap(), "2000:aaa::/48".parse().unwrap()), false);
        test_cases.insert(("2000:aaa::/48".parse().unwrap(), "2000:aaa::/56".parse().unwrap()), true);

        for (key, val) in test_cases.iter() {
            let (src, dest) = (key.0, key.1);
            assert_eq!(src.is_supernet_of(dest), *val, "testing with {} and {}", src, dest);
        }
    }

    #[test]
    fn test_overlaps() {
        let other: Ipv6Network = "2001:DB8:ACAD::1/64".parse().unwrap();
        let other2: Ipv6Network = "2001:DB8:ACAD::20:2/64".parse().unwrap();

        assert_eq!(other2.overlaps(other), true);
    }
}