Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
// Copyright 2018 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};

#[cfg(feature = "owning_ref")]
use owning_ref::StableAddress;

#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

/// Basic operations for a mutex.
///
/// Types implementing this trait can be used by `Mutex` to form a safe and
/// fully-functioning mutex type.
///
/// # Safety
///
/// Implementations of this trait must ensure that the mutex is actually
/// exclusive: a lock can't be acquired while the mutex is already locked.
pub unsafe trait RawMutex {
    /// Initial value for an unlocked mutex.
    // A “non-constant” const item is a legacy way to supply an initialized value to downstream
    // static items. Can hopefully be replaced with `const fn new() -> Self` at some point.
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self;

    /// Marker type which determines whether a lock guard should be `Send`. Use
    /// one of the `GuardSend` or `GuardNoSend` helper types here.
    type GuardMarker;

    /// Acquires this mutex, blocking the current thread until it is able to do so.
    fn lock(&self);

    /// Attempts to acquire this mutex without blocking. Returns `true`
    /// if the lock was successfully acquired and `false` otherwise.
    fn try_lock(&self) -> bool;

    /// Unlocks this mutex.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held in the current context, i.e. it must
    /// be paired with a successful call to [`lock`], [`try_lock`], [`try_lock_for`] or [`try_lock_until`].
    ///
    /// [`lock`]: #tymethod.lock
    /// [`try_lock`]: #tymethod.try_lock
    /// [`try_lock_for`]: trait.RawMutexTimed.html#tymethod.try_lock_for
    /// [`try_lock_until`]: trait.RawMutexTimed.html#tymethod.try_lock_until
    unsafe fn unlock(&self);

    /// Checks whether the mutex is currently locked.
    #[inline]
    fn is_locked(&self) -> bool {
        let acquired_lock = self.try_lock();
        if acquired_lock {
            // Safety: The lock has been successfully acquired above.
            unsafe {
                self.unlock();
            }
        }
        !acquired_lock
    }
}

/// Additional methods for mutexes which support fair unlocking.
///
/// Fair unlocking means that a lock is handed directly over to the next waiting
/// thread if there is one, without giving other threads the opportunity to
/// "steal" the lock in the meantime. This is typically slower than unfair
/// unlocking, but may be necessary in certain circumstances.
pub unsafe trait RawMutexFair: RawMutex {
    /// Unlocks this mutex using a fair unlock protocol.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held in the current context, see
    /// the documentation of [`unlock`].
    ///
    /// [`unlock`]: trait.RawMutex.html#tymethod.unlock
    unsafe fn unlock_fair(&self);

    /// Temporarily yields the mutex to a waiting thread if there is one.
    ///
    /// This method is functionally equivalent to calling `unlock_fair` followed
    /// by `lock`, however it can be much more efficient in the case where there
    /// are no waiting threads.
    ///
    /// # Safety
    ///
    /// This method may only be called if the mutex is held in the current context, see
    /// the documentation of [`unlock`].
    ///
    /// [`unlock`]: trait.RawMutex.html#tymethod.unlock
    unsafe fn bump(&self) {
        self.unlock_fair();
        self.lock();
    }
}

/// Additional methods for mutexes which support locking with timeouts.
///
/// The `Duration` and `Instant` types are specified as associated types so that
/// this trait is usable even in `no_std` environments.
pub unsafe trait RawMutexTimed: RawMutex {
    /// Duration type used for `try_lock_for`.
    type Duration;

    /// Instant type used for `try_lock_until`.
    type Instant;

    /// Attempts to acquire this lock until a timeout is reached.
    fn try_lock_for(&self, timeout: Self::Duration) -> bool;

    /// Attempts to acquire this lock until a timeout is reached.
    fn try_lock_until(&self, timeout: Self::Instant) -> bool;
}

/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
pub struct Mutex<R, T: ?Sized> {
    raw: R,
    data: UnsafeCell<T>,
}

unsafe impl<R: RawMutex + Send, T: ?Sized + Send> Send for Mutex<R, T> {}
unsafe impl<R: RawMutex + Sync, T: ?Sized + Send> Sync for Mutex<R, T> {}

impl<R: RawMutex, T> Mutex<R, T> {
    /// Creates a new mutex in an unlocked state ready for use.
    #[cfg(feature = "nightly")]
    #[inline]
    pub const fn new(val: T) -> Mutex<R, T> {
        Mutex {
            raw: R::INIT,
            data: UnsafeCell::new(val),
        }
    }

    /// Creates a new mutex in an unlocked state ready for use.
    #[cfg(not(feature = "nightly"))]
    #[inline]
    pub fn new(val: T) -> Mutex<R, T> {
        Mutex {
            raw: R::INIT,
            data: UnsafeCell::new(val),
        }
    }

    /// Consumes this mutex, returning the underlying data.
    #[inline]
    pub fn into_inner(self) -> T {
        self.data.into_inner()
    }
}

impl<R, T> Mutex<R, T> {
    /// Creates a new mutex based on a pre-existing raw mutex.
    ///
    /// This allows creating a mutex in a constant context on stable Rust.
    #[inline]
    pub const fn const_new(raw_mutex: R, val: T) -> Mutex<R, T> {
        Mutex {
            raw: raw_mutex,
            data: UnsafeCell::new(val),
        }
    }
}

impl<R: RawMutex, T: ?Sized> Mutex<R, T> {
    /// # Safety
    ///
    /// The lock must be held when calling this method.
    #[inline]
    unsafe fn guard(&self) -> MutexGuard<'_, R, T> {
        MutexGuard {
            mutex: self,
            marker: PhantomData,
        }
    }

    /// Acquires a mutex, blocking the current thread until it is able to do so.
    ///
    /// This function will block the local thread until it is available to acquire
    /// the mutex. Upon returning, the thread is the only thread with the mutex
    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
    /// the guard goes out of scope, the mutex will be unlocked.
    ///
    /// Attempts to lock a mutex in the thread which already holds the lock will
    /// result in a deadlock.
    #[inline]
    pub fn lock(&self) -> MutexGuard<'_, R, T> {
        self.raw.lock();
        // SAFETY: The lock is held, as required.
        unsafe { self.guard() }
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then `None` is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// This function does not block.
    #[inline]
    pub fn try_lock(&self) -> Option<MutexGuard<'_, R, T>> {
        if self.raw.try_lock() {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place---the mutable borrow statically guarantees no locks exist.
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data.get() }
    }

    /// Checks whether the mutex is currently locked.
    #[inline]
    pub fn is_locked(&self) -> bool {
        self.raw.is_locked()
    }

    /// Forcibly unlocks the mutex.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `MutexGuard` object alive, for example when
    /// dealing with FFI.
    ///
    /// # Safety
    ///
    /// This method must only be called if the current thread logically owns a
    /// `MutexGuard` but that guard has be discarded using `mem::forget`.
    /// Behavior is undefined if a mutex is unlocked when not locked.
    #[inline]
    pub unsafe fn force_unlock(&self) {
        self.raw.unlock();
    }

    /// Returns the underlying raw mutex object.
    ///
    /// Note that you will most likely need to import the `RawMutex` trait from
    /// `lock_api` to be able to call functions on the raw mutex.
    ///
    /// # Safety
    ///
    /// This method is unsafe because it allows unlocking a mutex while
    /// still holding a reference to a `MutexGuard`.
    #[inline]
    pub unsafe fn raw(&self) -> &R {
        &self.raw
    }

    /// Returns a raw pointer to the underlying data.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `MutexGuard` object alive, for example when
    /// dealing with FFI.
    ///
    /// # Safety
    ///
    /// You must ensure that there are no data races when dereferencing the
    /// returned pointer, for example if the current thread logically owns
    /// a `MutexGuard` but that guard has been discarded using `mem::forget`.
    #[inline]
    pub fn data_ptr(&self) -> *mut T {
        self.data.get()
    }
}

impl<R: RawMutexFair, T: ?Sized> Mutex<R, T> {
    /// Forcibly unlocks the mutex using a fair unlock procotol.
    ///
    /// This is useful when combined with `mem::forget` to hold a lock without
    /// the need to maintain a `MutexGuard` object alive, for example when
    /// dealing with FFI.
    ///
    /// # Safety
    ///
    /// This method must only be called if the current thread logically owns a
    /// `MutexGuard` but that guard has be discarded using `mem::forget`.
    /// Behavior is undefined if a mutex is unlocked when not locked.
    #[inline]
    pub unsafe fn force_unlock_fair(&self) {
        self.raw.unlock_fair();
    }
}

impl<R: RawMutexTimed, T: ?Sized> Mutex<R, T> {
    /// Attempts to acquire this lock until a timeout is reached.
    ///
    /// If the lock could not be acquired before the timeout expired, then
    /// `None` is returned. Otherwise, an RAII guard is returned. The lock will
    /// be unlocked when the guard is dropped.
    #[inline]
    pub fn try_lock_for(&self, timeout: R::Duration) -> Option<MutexGuard<'_, R, T>> {
        if self.raw.try_lock_for(timeout) {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }

    /// Attempts to acquire this lock until a timeout is reached.
    ///
    /// If the lock could not be acquired before the timeout expired, then
    /// `None` is returned. Otherwise, an RAII guard is returned. The lock will
    /// be unlocked when the guard is dropped.
    #[inline]
    pub fn try_lock_until(&self, timeout: R::Instant) -> Option<MutexGuard<'_, R, T>> {
        if self.raw.try_lock_until(timeout) {
            // SAFETY: The lock is held, as required.
            Some(unsafe { self.guard() })
        } else {
            None
        }
    }
}

impl<R: RawMutex, T: ?Sized + Default> Default for Mutex<R, T> {
    #[inline]
    fn default() -> Mutex<R, T> {
        Mutex::new(Default::default())
    }
}

impl<R: RawMutex, T> From<T> for Mutex<R, T> {
    #[inline]
    fn from(t: T) -> Mutex<R, T> {
        Mutex::new(t)
    }
}

impl<R: RawMutex, T: ?Sized + fmt::Debug> fmt::Debug for Mutex<R, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.try_lock() {
            Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
            None => {
                struct LockedPlaceholder;
                impl fmt::Debug for LockedPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                        f.write_str("<locked>")
                    }
                }

                f.debug_struct("Mutex")
                    .field("data", &LockedPlaceholder)
                    .finish()
            }
        }
    }
}

// Copied and modified from serde
#[cfg(feature = "serde")]
impl<R, T> Serialize for Mutex<R, T>
where
    R: RawMutex,
    T: Serialize + ?Sized,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.lock().serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, R, T> Deserialize<'de> for Mutex<R, T>
where
    R: RawMutex,
    T: Deserialize<'de> + ?Sized,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Deserialize::deserialize(deserializer).map(Mutex::new)
    }
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, R: RawMutex, T: ?Sized> {
    mutex: &'a Mutex<R, T>,
    marker: PhantomData<(&'a mut T, R::GuardMarker)>,
}

unsafe impl<'a, R: RawMutex + Sync + 'a, T: ?Sized + Sync + 'a> Sync for MutexGuard<'a, R, T> {}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T> {
    /// Returns a reference to the original `Mutex` object.
    pub fn mutex(s: &Self) -> &'a Mutex<R, T> {
        s.mutex
    }

    /// Makes a new `MappedMutexGuard` for a component of the locked data.
    ///
    /// This operation cannot fail as the `MutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedMutexGuard<'a, R, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let raw = &s.mutex.raw;
        let data = f(unsafe { &mut *s.mutex.data.get() });
        mem::forget(s);
        MappedMutexGuard {
            raw,
            data,
            marker: PhantomData,
        }
    }

    /// Attempts to make a new `MappedMutexGuard` for a component of the
    /// locked data. The original guard is returned if the closure returns `None`.
    ///
    /// This operation cannot fail as the `MutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MutexGuard::try_map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn try_map<U: ?Sized, F>(s: Self, f: F) -> Result<MappedMutexGuard<'a, R, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let raw = &s.mutex.raw;
        let data = match f(unsafe { &mut *s.mutex.data.get() }) {
            Some(data) => data,
            None => return Err(s),
        };
        mem::forget(s);
        Ok(MappedMutexGuard {
            raw,
            data,
            marker: PhantomData,
        })
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// This is safe because `&mut` guarantees that there exist no other
    /// references to the data protected by the mutex.
    #[inline]
    pub fn unlocked<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            s.mutex.raw.unlock();
        }
        defer!(s.mutex.raw.lock());
        f()
    }
}

impl<'a, R: RawMutexFair + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T> {
    /// Unlocks the mutex using a fair unlock protocol.
    ///
    /// By default, mutexes are unfair and allow the current thread to re-lock
    /// the mutex before another has the chance to acquire the lock, even if
    /// that thread has been blocked on the mutex for a long time. This is the
    /// default because it allows much higher throughput as it avoids forcing a
    /// context switch on every mutex unlock. This can result in one thread
    /// acquiring a mutex many more times than other threads.
    ///
    /// However in some cases it can be beneficial to ensure fairness by forcing
    /// the lock to pass on to a waiting thread if there is one. This is done by
    /// using this method instead of dropping the `MutexGuard` normally.
    #[inline]
    pub fn unlock_fair(s: Self) {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            s.mutex.raw.unlock_fair();
        }
        mem::forget(s);
    }

    /// Temporarily unlocks the mutex to execute the given function.
    ///
    /// The mutex is unlocked using a fair unlock protocol.
    ///
    /// This is safe because `&mut` guarantees that there exist no other
    /// references to the data protected by the mutex.
    #[inline]
    pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U
    where
        F: FnOnce() -> U,
    {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            s.mutex.raw.unlock_fair();
        }
        defer!(s.mutex.raw.lock());
        f()
    }

    /// Temporarily yields the mutex to a waiting thread if there is one.
    ///
    /// This method is functionally equivalent to calling `unlock_fair` followed
    /// by `lock`, however it can be much more efficient in the case where there
    /// are no waiting threads.
    #[inline]
    pub fn bump(s: &mut Self) {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            s.mutex.raw.bump();
        }
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> Deref for MutexGuard<'a, R, T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.mutex.data.get() }
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> DerefMut for MutexGuard<'a, R, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.mutex.data.get() }
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> Drop for MutexGuard<'a, R, T> {
    #[inline]
    fn drop(&mut self) {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            self.mutex.raw.unlock();
        }
    }
}

impl<'a, R: RawMutex + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug for MutexGuard<'a, R, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, R: RawMutex + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display for MutexGuard<'a, R, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> StableAddress for MutexGuard<'a, R, T> {}

/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MappedMutexGuard<'a, R: RawMutex, T: ?Sized> {
    raw: &'a R,
    data: *mut T,
    marker: PhantomData<&'a mut T>,
}

unsafe impl<'a, R: RawMutex + Sync + 'a, T: ?Sized + Sync + 'a> Sync
    for MappedMutexGuard<'a, R, T>
{
}
unsafe impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> Send for MappedMutexGuard<'a, R, T> where
    R::GuardMarker: Send
{
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> MappedMutexGuard<'a, R, T> {
    /// Makes a new `MappedMutexGuard` for a component of the locked data.
    ///
    /// This operation cannot fail as the `MappedMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MappedMutexGuard::map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedMutexGuard<'a, R, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let raw = s.raw;
        let data = f(unsafe { &mut *s.data });
        mem::forget(s);
        MappedMutexGuard {
            raw,
            data,
            marker: PhantomData,
        }
    }

    /// Attempts to make a new `MappedMutexGuard` for a component of the
    /// locked data. The original guard is returned if the closure returns `None`.
    ///
    /// This operation cannot fail as the `MappedMutexGuard` passed
    /// in already locked the mutex.
    ///
    /// This is an associated function that needs to be
    /// used as `MappedMutexGuard::try_map(...)`. A method would interfere with methods of
    /// the same name on the contents of the locked data.
    #[inline]
    pub fn try_map<U: ?Sized, F>(s: Self, f: F) -> Result<MappedMutexGuard<'a, R, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let raw = s.raw;
        let data = match f(unsafe { &mut *s.data }) {
            Some(data) => data,
            None => return Err(s),
        };
        mem::forget(s);
        Ok(MappedMutexGuard {
            raw,
            data,
            marker: PhantomData,
        })
    }
}

impl<'a, R: RawMutexFair + 'a, T: ?Sized + 'a> MappedMutexGuard<'a, R, T> {
    /// Unlocks the mutex using a fair unlock protocol.
    ///
    /// By default, mutexes are unfair and allow the current thread to re-lock
    /// the mutex before another has the chance to acquire the lock, even if
    /// that thread has been blocked on the mutex for a long time. This is the
    /// default because it allows much higher throughput as it avoids forcing a
    /// context switch on every mutex unlock. This can result in one thread
    /// acquiring a mutex many more times than other threads.
    ///
    /// However in some cases it can be beneficial to ensure fairness by forcing
    /// the lock to pass on to a waiting thread if there is one. This is done by
    /// using this method instead of dropping the `MutexGuard` normally.
    #[inline]
    pub fn unlock_fair(s: Self) {
        // Safety: A MutexGuard always holds the lock.
        unsafe {
            s.raw.unlock_fair();
        }
        mem::forget(s);
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> Deref for MappedMutexGuard<'a, R, T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.data }
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> DerefMut for MappedMutexGuard<'a, R, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data }
    }
}

impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> Drop for MappedMutexGuard<'a, R, T> {
    #[inline]
    fn drop(&mut self) {
        // Safety: A MappedMutexGuard always holds the lock.
        unsafe {
            self.raw.unlock();
        }
    }
}

impl<'a, R: RawMutex + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug for MappedMutexGuard<'a, R, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, R: RawMutex + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display
    for MappedMutexGuard<'a, R, T>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(feature = "owning_ref")]
unsafe impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> StableAddress for MappedMutexGuard<'a, R, T> {}