1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
//! Bit level parsers and combinators //! //! Bit parsing is handled by tweaking the input in most macros. //! In byte level parsing, the input is generally a `&[u8]` passed from combinator //! to combinator as the slices are manipulated. //! //! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is a byte slice, //! the second part is a bit offset in the first byte of the slice. //! //! By passing a pair like this, we can leverage most of the existing combinators, and avoid //! transforming the whole slice to a vector of booleans. This should make it easy //! to see a byte slice as a bit stream, and parse code points of arbitrary bit length. //! /// Transforms its byte slice input into a bit stream for the underlying parser. This allows the /// given bit stream parser to work on a byte slice input. /// /// Signature: /// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>` /// /// ``` /// # #[macro_use] extern crate nom; /// # use nom::{Err, Needed}; /// # fn main() { /// named!( take_4_bits<u8>, bits!( take_bits!( 4u8 ) ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF, 0x12]; /// let sl = &input[..]; /// /// assert_eq!(take_4_bits( sl ), Ok( (&sl[1..], 0xA) )); /// assert_eq!(take_4_bits( &b""[..] ), Err(Err::Incomplete(Needed::Size(1)))); /// # } #[macro_export(local_inner_macros)] macro_rules! bits ( ($i:expr, $submac:ident!( $($args:tt)* )) => ({ $crate::bits::bitsc($i, move |i| { $submac!(i, $($args)*) }) }); ($i:expr, $f:expr) => ( bits!($i, call!($f)) ); ); /// Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying /// parser, allowing byte-slice parsers to work on bit streams. /// /// Signature: /// `bytes!( parser ) => ( (&[u8], usize), &[u8] -> IResult<&[u8], T> ) -> IResult<(&[u8], usize), T>`, /// /// A partial byte remaining in the input will be ignored and the given parser will start parsing /// at the next full byte. /// /// ``` /// # #[macro_use] extern crate nom; /// # use nom::combinator::rest; /// # use nom::error::ErrorKind; /// # fn main() { /// /// named!( parse<(u8, u8, &[u8])>, bits!( tuple!( /// take_bits!(4u8), /// take_bits!(8u8), /// bytes!(rest::<_, (_, ErrorKind)>) /// ))); /// /// let input = &[0xde, 0xad, 0xbe, 0xaf]; /// /// assert_eq!(parse( input ), Ok(( &[][..], (0xd, 0xea, &[0xbe, 0xaf][..]) ))); /// # } #[macro_export(local_inner_macros)] macro_rules! bytes ( ($i:expr, $submac:ident!( $($args:tt)* )) => ({ $crate::bits::bytesc($i, move |i| { $submac!(i, $($args)*) }) }); ($i:expr, $f:expr) => ( bytes!($i, call!($f)) ); ); /// Consumes the specified number of bits and returns them as the specified type. /// /// Signature: /// `take_bits!(type, count) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>` /// /// ``` /// # #[macro_use] extern crate nom; /// # fn main() { /// named!(bits_pair<(&[u8], usize), (u8, u8)>, pair!( take_bits!(4u8), take_bits!(4u8) ) ); /// named!( take_pair<(u8, u8)>, bits!( bits_pair ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF]; /// let sl = &input[..]; /// /// assert_eq!(take_pair( sl ), Ok((&sl[1..], (0xA, 0xB))) ); /// assert_eq!(take_pair( &sl[1..] ), Ok((&sl[2..], (0xC, 0xD))) ); /// # } /// ``` #[macro_export(local_inner_macros)] macro_rules! take_bits ( ($i:expr, $count:expr) => ( { let res: $crate::IResult<_, _> = $crate::bits::streaming::take($count)($i); res } ); ); /// Matches the given bit pattern. /// /// Signature: /// `tag_bits!(type, count, pattern) => ( (&[T], usize), U, usize, U) -> IResult<(&[T], usize), U>` /// /// The caller must specify the number of bits to consume. The matched value is included in the /// result on success. /// /// ``` /// # #[macro_use] extern crate nom; /// # fn main() { /// named!( take_a<u8>, bits!( tag_bits!(4usize, 0xA) ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF]; /// let sl = &input[..]; /// /// assert_eq!(take_a( sl ), Ok((&sl[1..], 0xA)) ); /// # } /// ``` #[macro_export(local_inner_macros)] macro_rules! tag_bits ( ($i:expr, $count:expr, $p: expr) => ( { let res: $crate::IResult<_, _> = $crate::bits::streaming::tag($p, $count)($i); res } ) ); #[cfg(test)] mod tests { use crate::lib::std::ops::{AddAssign, Shl, Shr}; use crate::internal::{Err, Needed, IResult}; use crate::error::ErrorKind; #[test] fn take_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(take_bits!((sl, 0), 0u8), Ok(((sl, 0), 0))); assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170))); assert_eq!(take_bits!((sl, 0), 3u8), Ok(((&sl[0..], 3), 5))); assert_eq!(take_bits!((sl, 0), 6u8), Ok(((&sl[0..], 6), 42))); assert_eq!(take_bits!((sl, 1), 1u8), Ok(((&sl[0..], 2), 0))); assert_eq!(take_bits!((sl, 1), 2u8), Ok(((&sl[0..], 3), 1))); assert_eq!(take_bits!((sl, 1), 3u8), Ok(((&sl[0..], 4), 2))); assert_eq!(take_bits!((sl, 6), 3u8), Ok(((&sl[1..], 1), 5))); assert_eq!(take_bits!((sl, 0), 10u8), Ok(((&sl[1..], 2), 683))); assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170))); assert_eq!(take_bits!((sl, 6), 10u8), Ok(((&sl[2..], 0), 752))); assert_eq!(take_bits!((sl, 6), 11u8), Ok(((&sl[2..], 1), 1504))); assert_eq!(take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), 700_163))); assert_eq!(take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), 716_851))); let r: IResult<_,u32> = take_bits!((sl, 4), 22u8); assert_eq!( r, Err(Err::Incomplete(Needed::Size(22))) ); } #[test] fn tag_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(tag_bits!((sl, 0), 3u8, 0b101), Ok(((&sl[0..], 3), 5))); assert_eq!(tag_bits!((sl, 0), 4u8, 0b1010), Ok(((&sl[0..], 4), 10))); } named!(ch<(&[u8],usize),(u8,u8)>, do_parse!( tag_bits!(3u8, 0b101) >> x: take_bits!(4u8) >> y: take_bits!(5u8) >> (x,y) ) ); #[test] fn chain_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(ch((&input[..], 0)), Ok(((&sl[1..], 4), (5, 15)))); assert_eq!(ch((&input[..], 4)), Ok(((&sl[2..], 0), (7, 16)))); assert_eq!(ch((&input[..1], 0)), Err(Err::Incomplete(Needed::Size(5)))); } named!(ch_bytes<(u8, u8)>, bits!(ch)); #[test] fn bits_to_bytes() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; assert_eq!(ch_bytes(&input[..]), Ok((&input[2..], (5, 15)))); assert_eq!(ch_bytes(&input[..1]), Err(Err::Incomplete(Needed::Size(1)))); assert_eq!( ch_bytes(&input[1..]), Err(Err::Error(error_position!(&input[1..], ErrorKind::TagBits))) ); } named!(bits_bytes_bs, bits!(bytes!(crate::combinator::rest::<_, (&[u8], ErrorKind)>))); #[test] fn bits_bytes() { let input = [0b10_10_10_10]; assert_eq!(bits_bytes_bs(&input[..]), Ok((&[][..], &[0b10_10_10_10][..]))); } #[derive(PartialEq, Debug)] struct FakeUint(u32); impl AddAssign for FakeUint { fn add_assign(&mut self, other: FakeUint) { *self = FakeUint(self.0 + other.0); } } impl Shr<usize> for FakeUint { type Output = FakeUint; fn shr(self, shift: usize) -> FakeUint { FakeUint(self.0 >> shift) } } impl Shl<usize> for FakeUint { type Output = FakeUint; fn shl(self, shift: usize) -> FakeUint { FakeUint(self.0 << shift) } } impl From<u8> for FakeUint { fn from(i: u8) -> FakeUint { FakeUint(u32::from(i)) } } #[test] fn non_privitive_type() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!( take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), FakeUint(700_163))) ); assert_eq!( take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), FakeUint(716_851))) ); let r3: IResult<_, FakeUint> = take_bits!((sl, 4), 22u8); assert_eq!( r3, Err(Err::Incomplete(Needed::Size(22))) ); } }