1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
//! combinators applying parsers in sequence #[macro_use] mod macros; use crate::internal::IResult; use crate::error::ParseError; /// Gets an object from the first parser, /// then gets another object from the second parser. /// /// # Arguments /// * `first` The first parser to apply. /// * `second` The second parser to apply. /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::sequence::pair; /// use nom::bytes::complete::tag; /// /// let parser = pair(tag("abc"), tag("efg")); /// /// assert_eq!(parser("abcefg"), Ok(("", ("abc", "efg")))); /// assert_eq!(parser("abcefghij"), Ok(("hij", ("abc", "efg")))); /// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); /// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag)))); /// ``` pub fn pair<I, O1, O2, E: ParseError<I>, F, G>(first: F, second: G) -> impl Fn(I) -> IResult<I, (O1, O2), E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { move |input: I| { let (input, o1) = first(input)?; second(input).map(|(i, o2)| (i, (o1, o2))) } } // this implementation is used for type inference issues in macros #[doc(hidden)] pub fn pairc<I, O1, O2, E: ParseError<I>, F, G>(input: I, first: F, second: G) -> IResult<I, (O1, O2), E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { pair(first, second)(input) } /// Matches an object from the first parser and discards it, /// then gets an object from the second parser. /// /// # Arguments /// * `first` The opening parser. /// * `second` The second parser to get object. /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::sequence::preceded; /// use nom::bytes::complete::tag; /// /// let parser = preceded(tag("abc"), tag("efg")); /// /// assert_eq!(parser("abcefg"), Ok(("", "efg"))); /// assert_eq!(parser("abcefghij"), Ok(("hij", "efg"))); /// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); /// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag)))); /// ``` pub fn preceded<I, O1, O2, E: ParseError<I>, F, G>(first: F, second: G) -> impl Fn(I) -> IResult<I, O2, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { move |input: I| { let (input, _) = first(input)?; second(input) } } // this implementation is used for type inference issues in macros #[doc(hidden)] pub fn precededc<I, O1, O2, E: ParseError<I>, F, G>(input: I, first: F, second: G) -> IResult<I, O2, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { preceded(first, second)(input) } /// Gets an object from the first parser, /// then matches an object from the second parser and discards it. /// /// # Arguments /// * `first` The first parser to apply. /// * `second` The second parser to match an object. /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::sequence::terminated; /// use nom::bytes::complete::tag; /// /// let parser = terminated(tag("abc"), tag("efg")); /// /// assert_eq!(parser("abcefg"), Ok(("", "abc"))); /// assert_eq!(parser("abcefghij"), Ok(("hij", "abc"))); /// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); /// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag)))); /// ``` pub fn terminated<I, O1, O2, E: ParseError<I>, F, G>(first: F, second: G) -> impl Fn(I) -> IResult<I, O1, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { move |input: I| { let (input, o1) = first(input)?; second(input).map(|(i, _)| (i, o1)) } } // this implementation is used for type inference issues in macros #[doc(hidden)] pub fn terminatedc<I, O1, O2, E: ParseError<I>, F, G>(input: I, first: F, second: G) -> IResult<I, O1, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, { terminated(first, second)(input) } /// Gets an object from the first parser, /// then matches an object from the sep_parser and discards it, /// then gets another object from the second parser. /// /// # Arguments /// * `first` The first parser to apply. /// * `sep` The separator parser to apply. /// * `second` The second parser to apply. /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::sequence::separated_pair; /// use nom::bytes::complete::tag; /// /// let parser = separated_pair(tag("abc"), tag("|"), tag("efg")); /// /// assert_eq!(parser("abc|efg"), Ok(("", ("abc", "efg")))); /// assert_eq!(parser("abc|efghij"), Ok(("hij", ("abc", "efg")))); /// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); /// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag)))); /// ``` pub fn separated_pair<I, O1, O2, O3, E: ParseError<I>, F, G, H>(first: F, sep: G, second: H) -> impl Fn(I) -> IResult<I, (O1, O3), E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, H: Fn(I) -> IResult<I, O3, E>, { move |input: I| { let (input, o1) = first(input)?; let (input, _) = sep(input)?; second(input).map(|(i, o2)| (i, (o1, o2))) } } // this implementation is used for type inference issues in macros #[doc(hidden)] pub fn separated_pairc<I, O1, O2, O3, E: ParseError<I>, F, G, H>(input: I, first: F, sep: G, second: H) -> IResult<I, (O1, O3), E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, H: Fn(I) -> IResult<I, O3, E>, { separated_pair(first, sep, second)(input) } /// Matches an object from the first parser, /// then gets an object from the sep_parser, /// then matches another object from the second parser. /// /// # Arguments /// * `first` The first parser to apply. /// * `sep` The separator parser to apply. /// * `second` The second parser to apply. /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::sequence::delimited; /// use nom::bytes::complete::tag; /// /// let parser = delimited(tag("abc"), tag("|"), tag("efg")); /// /// assert_eq!(parser("abc|efg"), Ok(("", "|"))); /// assert_eq!(parser("abc|efghij"), Ok(("hij", "|"))); /// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag)))); /// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag)))); /// ``` pub fn delimited<I, O1, O2, O3, E: ParseError<I>, F, G, H>(first: F, sep: G, second: H) -> impl Fn(I) -> IResult<I, O2, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, H: Fn(I) -> IResult<I, O3, E>, { move |input: I| { let (input, _) = first(input)?; let (input, o2) = sep(input)?; second(input).map(|(i, _)| (i, o2)) } } // this implementation is used for type inference issues in macros #[doc(hidden)] pub fn delimitedc<I, O1, O2, O3, E: ParseError<I>, F, G, H>(input: I, first: F, sep: G, second: H) -> IResult<I, O2, E> where F: Fn(I) -> IResult<I, O1, E>, G: Fn(I) -> IResult<I, O2, E>, H: Fn(I) -> IResult<I, O3, E>, { delimited(first, sep, second)(input) } /// helper trait for the tuple combinator /// /// this trait is implemented for tuples of parsers of up to 21 elements pub trait Tuple<I,O,E> { /// parses the input and returns a tuple of results of each parser fn parse(&self, input: I) -> IResult<I,O,E>; } impl<Input, Output, Error: ParseError<Input>, F: Fn(Input) -> IResult<Input, Output, Error> > Tuple<Input, (Output,), Error> for (F,) { fn parse(&self, input: Input) -> IResult<Input,(Output,),Error> { self.0(input).map(|(i,o)| (i, (o,))) } } macro_rules! tuple_trait( ($name1:ident $ty1:ident, $name2: ident $ty2:ident, $($name:ident $ty:ident),*) => ( tuple_trait!(__impl $name1 $ty1, $name2 $ty2; $($name $ty),*); ); (__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident, $($name2:ident $ty2:ident),*) => ( tuple_trait_impl!($($name $ty),+); tuple_trait!(__impl $($name $ty),+ , $name1 $ty1; $($name2 $ty2),*); ); (__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident) => ( tuple_trait_impl!($($name $ty),+); tuple_trait_impl!($($name $ty),+, $name1 $ty1); ); ); macro_rules! tuple_trait_impl( ($($name:ident $ty: ident),+) => ( impl< Input: Clone, $($ty),+ , Error: ParseError<Input>, $($name: Fn(Input) -> IResult<Input, $ty, Error>),+ > Tuple<Input, ( $($ty),+ ), Error> for ( $($name),+ ) { fn parse(&self, input: Input) -> IResult<Input, ( $($ty),+ ), Error> { tuple_trait_inner!(0, self, input, (), $($name)+) } } ); ); macro_rules! tuple_trait_inner( ($it:tt, $self:expr, $input:expr, (), $head:ident $($id:ident)+) => ({ let (i, o) = $self.$it($input.clone())?; succ!($it, tuple_trait_inner!($self, i, ( o ), $($id)+)) }); ($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident $($id:ident)+) => ({ let (i, o) = $self.$it($input.clone())?; succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $($id)+)) }); ($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident) => ({ let (i, o) = $self.$it($input.clone())?; Ok((i, ($($parsed)* , o))) }); ); tuple_trait!(FnA A, FnB B, FnC C, FnD D, FnE E, FnF F, FnG G, FnH H, FnI I, FnJ J, FnK K, FnL L, FnM M, FnN N, FnO O, FnP P, FnQ Q, FnR R, FnS S, FnT T, FnU U); /// applies a tuple of parsers one by one and returns their results as a tuple /// /// ```rust /// # use nom::{Err, error::ErrorKind}; /// use nom::sequence::tuple; /// use nom::character::complete::{alpha1, digit1}; /// let parser = tuple((alpha1, digit1, alpha1)); /// /// assert_eq!(parser("abc123def"), Ok(("", ("abc", "123", "def")))); /// assert_eq!(parser("123def"), Err(Err::Error(("123def", ErrorKind::Alpha)))); /// ``` pub fn tuple<I: Clone, O, E: ParseError<I>, List: Tuple<I,O,E>>(l: List) -> impl Fn(I) -> IResult<I, O, E> { move |i: I| { l.parse(i) } } #[cfg(test)] mod tests { use super::*; #[test] fn single_element_tuples() { use crate::character::complete::{alpha1, digit1}; use crate::{Err, error::ErrorKind}; let parser = tuple((alpha1,)); assert_eq!(parser("abc123def"), Ok(("123def", ("abc",)))); assert_eq!(parser("123def"), Err(Err::Error(("123def", ErrorKind::Alpha)))); } }