1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
//! Elliptic Curve //! //! Cryptology relies on the difficulty of solving mathematical problems, such as the factor //! of large integers composed of two large prime numbers and the discrete logarithm of a //! random eliptic curve. This module provides low-level features of the latter. //! Elliptic Curve protocols can provide the same security with smaller keys. //! //! There are 2 forms of elliptic curves, `Fp` and `F2^m`. These curves use irreducible //! trinomial or pentanomial . Being a generic interface to a wide range of algorithms, //! the cuves are generally referenced by [`EcGroup`]. There are many built in groups //! found in [`Nid`]. //! //! OpenSSL Wiki explains the fields and curves in detail at [Eliptic Curve Cryptography]. //! //! [`EcGroup`]: struct.EcGroup.html //! [`Nid`]: ../nid/struct.Nid.html //! [Eliptic Curve Cryptography]: https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography //! //! # Examples //! //! ``` //! use openssl::ec::{EcGroup, EcPoint}; //! use openssl::nid::Nid; //! use openssl::error::ErrorStack; //! fn get_ec_point() -> Result<EcPoint, ErrorStack> { //! let group = EcGroup::from_curve_name(Nid::SECP224R1)?; //! let point = EcPoint::new(&group)?; //! Ok(point) //! } //! # fn main() { //! # let _ = get_ec_point(); //! # } //! ``` use ffi; use foreign_types::{ForeignType, ForeignTypeRef}; use libc::c_int; use std::fmt; use std::ptr; use bn::{BigNumContextRef, BigNumRef}; use error::ErrorStack; use nid::Nid; use pkey::{HasParams, HasPrivate, HasPublic, Params, Private, Public}; use {cvt, cvt_n, cvt_p, init}; /// Compressed or Uncompressed conversion /// /// Conversion from the binary value of the point on the curve is performed in one of /// compressed, uncompressed, or hybrid conversions. The default is compressed, except /// for binary curves. /// /// Further documentation is available in the [X9.62] standard. /// /// [X9.62]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2977&rep=rep1&type=pdf #[derive(Copy, Clone)] pub struct PointConversionForm(ffi::point_conversion_form_t); impl PointConversionForm { /// Compressed conversion from point value. pub const COMPRESSED: PointConversionForm = PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_COMPRESSED); /// Uncompressed conversion from point value. pub const UNCOMPRESSED: PointConversionForm = PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_UNCOMPRESSED); /// Performs both compressed and uncompressed conversions. pub const HYBRID: PointConversionForm = PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_HYBRID); } /// Named Curve or Explicit /// /// This type acts as a boolean as to whether the `EcGroup` is named or explicit. #[derive(Copy, Clone)] pub struct Asn1Flag(c_int); impl Asn1Flag { /// Curve defined using polynomial parameters /// /// Most applications use a named EC_GROUP curve, however, support /// is included to explicitly define the curve used to calculate keys /// This information would need to be known by both endpoint to make communication /// effective. /// /// OPENSSL_EC_EXPLICIT_CURVE, but that was only added in 1.1. /// Man page documents that 0 can be used in older versions. /// /// OpenSSL documentation at [`EC_GROUP`] /// /// [`EC_GROUP`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_seed_len.html pub const EXPLICIT_CURVE: Asn1Flag = Asn1Flag(0); /// Standard Curves /// /// Curves that make up the typical encryption use cases. The collection of curves /// are well known but extensible. /// /// OpenSSL documentation at [`EC_GROUP`] /// /// [`EC_GROUP`]: https://www.openssl.org/docs/manmaster/man3/EC_GROUP_order_bits.html pub const NAMED_CURVE: Asn1Flag = Asn1Flag(ffi::OPENSSL_EC_NAMED_CURVE); } foreign_type_and_impl_send_sync! { type CType = ffi::EC_GROUP; fn drop = ffi::EC_GROUP_free; /// Describes the curve /// /// A curve can be of the named curve type. These curves can be discovered /// using openssl binary `openssl ecparam -list_curves`. Other operations /// are available in the [wiki]. These named curves are available in the /// [`Nid`] module. /// /// Curves can also be generated using prime field parameters or a binary field. /// /// Prime fields use the formula `y^2 mod p = x^3 + ax + b mod p`. Binary /// fields use the formula `y^2 + xy = x^3 + ax^2 + b`. Named curves have /// assured security. To prevent accidental vulnerabilities, they should /// be prefered. /// /// [wiki]: https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations /// [`Nid`]: ../nid/index.html pub struct EcGroup; /// Reference to [`EcGroup`] /// /// [`EcGroup`]: struct.EcGroup.html pub struct EcGroupRef; } impl EcGroup { /// Returns the group of a standard named curve. /// /// OpenSSL documentation at [`EC_GROUP_new`]. /// /// [`EC_GROUP_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_new.html pub fn from_curve_name(nid: Nid) -> Result<EcGroup, ErrorStack> { unsafe { init(); cvt_p(ffi::EC_GROUP_new_by_curve_name(nid.as_raw())).map(EcGroup) } } } impl EcGroupRef { /// Places the components of a curve over a prime field in the provided `BigNum`s. /// The components make up the formula `y^2 mod p = x^3 + ax + b mod p`. /// /// OpenSSL documentation available at [`EC_GROUP_get_curve_GFp`] /// /// [`EC_GROUP_get_curve_GFp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_curve_GFp.html pub fn components_gfp( &self, p: &mut BigNumRef, a: &mut BigNumRef, b: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_GROUP_get_curve_GFp( self.as_ptr(), p.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the components of a curve over a binary field in the provided `BigNum`s. /// The components make up the formula `y^2 + xy = x^3 + ax^2 + b`. /// /// In this form `p` relates to the irreducible polynomial. Each bit represents /// a term in the polynomial. It will be set to 3 `1`s or 5 `1`s depending on /// using a trinomial or pentanomial. /// /// OpenSSL documentation at [`EC_GROUP_get_curve_GF2m`]. /// /// [`EC_GROUP_get_curve_GF2m`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_curve_GF2m.html #[cfg(not(osslconf = "OPENSSL_NO_EC2M"))] pub fn components_gf2m( &self, p: &mut BigNumRef, a: &mut BigNumRef, b: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_GROUP_get_curve_GF2m( self.as_ptr(), p.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Places the cofactor of the group in the provided `BigNum`. /// /// OpenSSL documentation at [`EC_GROUP_get_cofactor`] /// /// [`EC_GROUP_get_cofactor`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_cofactor.html pub fn cofactor( &self, cofactor: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_GROUP_get_cofactor( self.as_ptr(), cofactor.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Returns the degree of the curve. /// /// OpenSSL documentation at [`EC_GROUP_get_degree`] /// /// [`EC_GROUP_get_degree`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_degree.html pub fn degree(&self) -> u32 { unsafe { ffi::EC_GROUP_get_degree(self.as_ptr()) as u32 } } /// Returns the number of bits in the group order. /// /// OpenSSL documentation at [`EC_GROUP_order_bits`] /// /// [`EC_GROUP_order_bits`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_order_bits.html #[cfg(ossl110)] pub fn order_bits(&self) -> u32 { unsafe { ffi::EC_GROUP_order_bits(self.as_ptr()) as u32 } } /// Returns the generator for the given curve as a [`EcPoint`]. /// /// OpenSSL documentation at [`EC_GROUP_get0_generator`] /// /// [`EC_GROUP_get0_generator`]: https://www.openssl.org/docs/man1.1.0/man3/EC_GROUP_get0_generator.html pub fn generator(&self) -> &EcPointRef { unsafe { let ptr = ffi::EC_GROUP_get0_generator(self.as_ptr()); EcPointRef::from_ptr(ptr as *mut _) } } /// Places the order of the curve in the provided `BigNum`. /// /// OpenSSL documentation at [`EC_GROUP_get_order`] /// /// [`EC_GROUP_get_order`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_order.html pub fn order( &self, order: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_GROUP_get_order( self.as_ptr(), order.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Sets the flag determining if the group corresponds to a named curve or must be explicitly /// parameterized. /// /// This defaults to `EXPLICIT_CURVE` in OpenSSL 1.0.1 and 1.0.2, but `NAMED_CURVE` in OpenSSL /// 1.1.0. pub fn set_asn1_flag(&mut self, flag: Asn1Flag) { unsafe { ffi::EC_GROUP_set_asn1_flag(self.as_ptr(), flag.0); } } /// Returns the name of the curve, if a name is associated. /// /// OpenSSL documentation at [`EC_GROUP_get_curve_name`] /// /// [`EC_GROUP_get_curve_name`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_GROUP_get_curve_name.html pub fn curve_name(&self) -> Option<Nid> { let nid = unsafe { ffi::EC_GROUP_get_curve_name(self.as_ptr()) }; if nid > 0 { Some(Nid::from_raw(nid)) } else { None } } } foreign_type_and_impl_send_sync! { type CType = ffi::EC_POINT; fn drop = ffi::EC_POINT_free; /// Represents a point on the curve /// /// OpenSSL documentation at [`EC_POINT_new`] /// /// [`EC_POINT_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_new.html pub struct EcPoint; /// Reference to [`EcPoint`] /// /// [`EcPoint`]: struct.EcPoint.html pub struct EcPointRef; } impl EcPointRef { /// Computes `a + b`, storing the result in `self`. /// /// OpenSSL documentation at [`EC_POINT_add`] /// /// [`EC_POINT_add`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_add.html pub fn add( &mut self, group: &EcGroupRef, a: &EcPointRef, b: &EcPointRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_add( group.as_ptr(), self.as_ptr(), a.as_ptr(), b.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Computes `q * m`, storing the result in `self`. /// /// OpenSSL documentation at [`EC_POINT_mul`] /// /// [`EC_POINT_mul`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_mul.html pub fn mul( &mut self, group: &EcGroupRef, q: &EcPointRef, m: &BigNumRef, ctx: &BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_mul( group.as_ptr(), self.as_ptr(), ptr::null(), q.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Computes `generator * n`, storing the result in `self`. pub fn mul_generator( &mut self, group: &EcGroupRef, n: &BigNumRef, ctx: &BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_mul( group.as_ptr(), self.as_ptr(), n.as_ptr(), ptr::null(), ptr::null(), ctx.as_ptr(), )) .map(|_| ()) } } /// Computes `generator * n + q * m`, storing the result in `self`. pub fn mul_full( &mut self, group: &EcGroupRef, n: &BigNumRef, q: &EcPointRef, m: &BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_mul( group.as_ptr(), self.as_ptr(), n.as_ptr(), q.as_ptr(), m.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Inverts `self`. /// /// OpenSSL documentation at [`EC_POINT_invert`] /// /// [`EC_POINT_invert`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_invert.html pub fn invert(&mut self, group: &EcGroupRef, ctx: &BigNumContextRef) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_invert( group.as_ptr(), self.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Serializes the point to a binary representation. /// /// OpenSSL documentation at [`EC_POINT_point2oct`] /// /// [`EC_POINT_point2oct`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_point2oct.html pub fn to_bytes( &self, group: &EcGroupRef, form: PointConversionForm, ctx: &mut BigNumContextRef, ) -> Result<Vec<u8>, ErrorStack> { unsafe { let len = ffi::EC_POINT_point2oct( group.as_ptr(), self.as_ptr(), form.0, ptr::null_mut(), 0, ctx.as_ptr(), ); if len == 0 { return Err(ErrorStack::get()); } let mut buf = vec![0; len]; let len = ffi::EC_POINT_point2oct( group.as_ptr(), self.as_ptr(), form.0, buf.as_mut_ptr(), len, ctx.as_ptr(), ); if len == 0 { Err(ErrorStack::get()) } else { Ok(buf) } } } /// Creates a new point on the specified curve with the same value. /// /// OpenSSL documentation at [`EC_POINT_dup`] /// /// [`EC_POINT_dup`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_dup.html pub fn to_owned(&self, group: &EcGroupRef) -> Result<EcPoint, ErrorStack> { unsafe { cvt_p(ffi::EC_POINT_dup(self.as_ptr(), group.as_ptr())).map(EcPoint) } } /// Determines if this point is equal to another. /// /// OpenSSL doucmentation at [`EC_POINT_cmp`] /// /// [`EC_POINT_cmp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_cmp.html pub fn eq( &self, group: &EcGroupRef, other: &EcPointRef, ctx: &mut BigNumContextRef, ) -> Result<bool, ErrorStack> { unsafe { let res = cvt_n(ffi::EC_POINT_cmp( group.as_ptr(), self.as_ptr(), other.as_ptr(), ctx.as_ptr(), ))?; Ok(res == 0) } } /// Place affine coordinates of a curve over a prime field in the provided /// `x` and `y` `BigNum`s /// /// OpenSSL documentation at [`EC_POINT_get_affine_coordinates_GFp`] /// /// [`EC_POINT_get_affine_coordinates_GFp`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_get_affine_coordinates_GFp.html pub fn affine_coordinates_gfp( &self, group: &EcGroupRef, x: &mut BigNumRef, y: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_get_affine_coordinates_GFp( group.as_ptr(), self.as_ptr(), x.as_ptr(), y.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } /// Place affine coordinates of a curve over a binary field in the provided /// `x` and `y` `BigNum`s /// /// OpenSSL documentation at [`EC_POINT_get_affine_coordinates_GF2m`] /// /// [`EC_POINT_get_affine_coordinates_GF2m`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_get_affine_coordinates_GF2m.html #[cfg(not(osslconf = "OPENSSL_NO_EC2M"))] pub fn affine_coordinates_gf2m( &self, group: &EcGroupRef, x: &mut BigNumRef, y: &mut BigNumRef, ctx: &mut BigNumContextRef, ) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_POINT_get_affine_coordinates_GF2m( group.as_ptr(), self.as_ptr(), x.as_ptr(), y.as_ptr(), ctx.as_ptr(), )) .map(|_| ()) } } } impl EcPoint { /// Creates a new point on the specified curve. /// /// OpenSSL documentation at [`EC_POINT_new`] /// /// [`EC_POINT_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_new.html pub fn new(group: &EcGroupRef) -> Result<EcPoint, ErrorStack> { unsafe { cvt_p(ffi::EC_POINT_new(group.as_ptr())).map(EcPoint) } } /// Creates point from a binary representation /// /// OpenSSL documentation at [`EC_POINT_oct2point`] /// /// [`EC_POINT_oct2point`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_POINT_oct2point.html pub fn from_bytes( group: &EcGroupRef, buf: &[u8], ctx: &mut BigNumContextRef, ) -> Result<EcPoint, ErrorStack> { let point = EcPoint::new(group)?; unsafe { cvt(ffi::EC_POINT_oct2point( group.as_ptr(), point.as_ptr(), buf.as_ptr(), buf.len(), ctx.as_ptr(), ))?; } Ok(point) } } generic_foreign_type_and_impl_send_sync! { type CType = ffi::EC_KEY; fn drop = ffi::EC_KEY_free; /// Public and optional Private key on the given curve /// /// OpenSSL documentation at [`EC_KEY_new`] /// /// [`EC_KEY_new`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_new.html pub struct EcKey<T>; /// Reference to [`EcKey`] /// /// [`EcKey`]: struct.EcKey.html pub struct EcKeyRef<T>; } impl<T> EcKeyRef<T> where T: HasPrivate, { private_key_to_pem! { /// Serializes the private key to a PEM-encoded ECPrivateKey structure. /// /// The output will have a header of `-----BEGIN EC PRIVATE KEY-----`. /// /// This corresponds to [`PEM_write_bio_ECPrivateKey`]. /// /// [`PEM_write_bio_ECPrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_ECPrivateKey.html private_key_to_pem, /// Serializes the private key to a PEM-encoded encrypted ECPrivateKey structure. /// /// The output will have a header of `-----BEGIN EC PRIVATE KEY-----`. /// /// This corresponds to [`PEM_write_bio_ECPrivateKey`]. /// /// [`PEM_write_bio_ECPrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_ECPrivateKey.html private_key_to_pem_passphrase, ffi::PEM_write_bio_ECPrivateKey } to_der! { /// Serializes the private key into a DER-encoded ECPrivateKey structure. /// /// This corresponds to [`i2d_ECPrivateKey`]. /// /// [`i2d_ECPrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/d2i_ECPrivate_key.html private_key_to_der, ffi::i2d_ECPrivateKey } /// Return [`EcPoint`] associated with the private key /// /// OpenSSL documentation at [`EC_KEY_get0_private_key`] /// /// [`EC_KEY_get0_private_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_private_key.html pub fn private_key(&self) -> &BigNumRef { unsafe { let ptr = ffi::EC_KEY_get0_private_key(self.as_ptr()); BigNumRef::from_ptr(ptr as *mut _) } } } impl<T> EcKeyRef<T> where T: HasPublic, { /// Returns the public key. /// /// OpenSSL documentation at [`EC_KEY_get0_pubic_key`] /// /// [`EC_KEY_get0_pubic_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_public_key.html pub fn public_key(&self) -> &EcPointRef { unsafe { let ptr = ffi::EC_KEY_get0_public_key(self.as_ptr()); EcPointRef::from_ptr(ptr as *mut _) } } } impl<T> EcKeyRef<T> where T: HasParams, { /// Return [`EcGroup`] of the `EcKey` /// /// OpenSSL documentation at [`EC_KEY_get0_group`] /// /// [`EC_KEY_get0_group`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_get0_group.html pub fn group(&self) -> &EcGroupRef { unsafe { let ptr = ffi::EC_KEY_get0_group(self.as_ptr()); EcGroupRef::from_ptr(ptr as *mut _) } } /// Checks the key for validity. /// /// OpenSSL documenation at [`EC_KEY_check_key`] /// /// [`EC_KEY_check_key`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_check_key.html pub fn check_key(&self) -> Result<(), ErrorStack> { unsafe { cvt(ffi::EC_KEY_check_key(self.as_ptr())).map(|_| ()) } } } impl<T> ToOwned for EcKeyRef<T> { type Owned = EcKey<T>; fn to_owned(&self) -> EcKey<T> { unsafe { let r = ffi::EC_KEY_up_ref(self.as_ptr()); assert!(r == 1); EcKey::from_ptr(self.as_ptr()) } } } impl EcKey<Params> { /// Constructs an `EcKey` corresponding to a known curve. /// /// It will not have an associated public or private key. This kind of key is primarily useful /// to be provided to the `set_tmp_ecdh` methods on `Ssl` and `SslContextBuilder`. /// /// OpenSSL documenation at [`EC_KEY_new_by_curve_name`] /// /// [`EC_KEY_new_by_curve_name`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_new_by_curve_name.html pub fn from_curve_name(nid: Nid) -> Result<EcKey<Params>, ErrorStack> { unsafe { init(); cvt_p(ffi::EC_KEY_new_by_curve_name(nid.as_raw())).map(|p| EcKey::from_ptr(p)) } } /// Constructs an `EcKey` corresponding to a curve. /// /// This corresponds to [`EC_KEY_set_group`]. /// /// [`EC_KEY_set_group`]: https://www.openssl.org/docs/man1.1.0/crypto/EC_KEY_new.html pub fn from_group(group: &EcGroupRef) -> Result<EcKey<Params>, ErrorStack> { unsafe { cvt_p(ffi::EC_KEY_new()) .map(|p| EcKey::from_ptr(p)) .and_then(|key| { cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key) }) } } } impl EcKey<Public> { /// Constructs an `EcKey` from the specified group with the associated `EcPoint`, public_key. /// /// This will only have the associated public_key. /// /// # Example /// /// ```no_run /// use openssl::bn::BigNumContext; /// use openssl::ec::*; /// use openssl::nid::Nid; /// use openssl::pkey::PKey; /// /// // get bytes from somewhere, i.e. this will not produce a valid key /// let public_key: Vec<u8> = vec![]; /// /// // create an EcKey from the binary form of a EcPoint /// let group = EcGroup::from_curve_name(Nid::SECP256K1).unwrap(); /// let mut ctx = BigNumContext::new().unwrap(); /// let point = EcPoint::from_bytes(&group, &public_key, &mut ctx).unwrap(); /// let key = EcKey::from_public_key(&group, &point); /// ``` pub fn from_public_key( group: &EcGroupRef, public_key: &EcPointRef, ) -> Result<EcKey<Public>, ErrorStack> { unsafe { cvt_p(ffi::EC_KEY_new()) .map(|p| EcKey::from_ptr(p)) .and_then(|key| { cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key) }) .and_then(|key| { cvt(ffi::EC_KEY_set_public_key( key.as_ptr(), public_key.as_ptr(), )) .map(|_| key) }) } } /// Constructs a public key from its affine coordinates. pub fn from_public_key_affine_coordinates( group: &EcGroupRef, x: &BigNumRef, y: &BigNumRef, ) -> Result<EcKey<Public>, ErrorStack> { unsafe { cvt_p(ffi::EC_KEY_new()) .map(|p| EcKey::from_ptr(p)) .and_then(|key| { cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key) }) .and_then(|key| { cvt(ffi::EC_KEY_set_public_key_affine_coordinates( key.as_ptr(), x.as_ptr(), y.as_ptr(), )) .map(|_| key) }) } } } impl EcKey<Private> { /// Generates a new public/private key pair on the specified curve. pub fn generate(group: &EcGroupRef) -> Result<EcKey<Private>, ErrorStack> { unsafe { cvt_p(ffi::EC_KEY_new()) .map(|p| EcKey::from_ptr(p)) .and_then(|key| { cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key) }) .and_then(|key| cvt(ffi::EC_KEY_generate_key(key.as_ptr())).map(|_| key)) } } /// Constructs an public/private key pair given a curve, a private key and a public key point. pub fn from_private_components( group: &EcGroupRef, private_number: &BigNumRef, public_key: &EcPointRef, ) -> Result<EcKey<Private>, ErrorStack> { unsafe { cvt_p(ffi::EC_KEY_new()) .map(|p| EcKey::from_ptr(p)) .and_then(|key| { cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key) }) .and_then(|key| { cvt(ffi::EC_KEY_set_private_key( key.as_ptr(), private_number.as_ptr(), )) .map(|_| key) }) .and_then(|key| { cvt(ffi::EC_KEY_set_public_key( key.as_ptr(), public_key.as_ptr(), )) .map(|_| key) }) } } private_key_from_pem! { /// Deserializes a private key from a PEM-encoded ECPrivateKey structure. /// /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`. /// /// This corresponds to `PEM_read_bio_ECPrivateKey`. private_key_from_pem, /// Deserializes a private key from a PEM-encoded encrypted ECPrivateKey structure. /// /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`. /// /// This corresponds to `PEM_read_bio_ECPrivateKey`. private_key_from_pem_passphrase, /// Deserializes a private key from a PEM-encoded encrypted ECPrivateKey structure. /// /// The callback should fill the password into the provided buffer and return its length. /// /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`. /// /// This corresponds to `PEM_read_bio_ECPrivateKey`. private_key_from_pem_callback, EcKey<Private>, ffi::PEM_read_bio_ECPrivateKey } from_der! { /// Decodes a DER-encoded elliptic curve private key structure. /// /// This corresponds to [`d2i_ECPrivateKey`]. /// /// [`d2i_ECPrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/d2i_ECPrivate_key.html private_key_from_der, EcKey<Private>, ffi::d2i_ECPrivateKey } } impl<T> Clone for EcKey<T> { fn clone(&self) -> EcKey<T> { (**self).to_owned() } } impl<T> fmt::Debug for EcKey<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "EcKey") } } #[cfg(test)] mod test { use hex::FromHex; use super::*; use bn::{BigNum, BigNumContext}; use nid::Nid; #[test] fn key_new_by_curve_name() { EcKey::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); } #[test] fn generate() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); EcKey::generate(&group).unwrap(); } #[test] fn cofactor() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let mut ctx = BigNumContext::new().unwrap(); let mut cofactor = BigNum::new().unwrap(); group.cofactor(&mut cofactor, &mut ctx).unwrap(); let one = BigNum::from_u32(1).unwrap(); assert_eq!(cofactor, one); } #[test] fn dup() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); drop(key.clone()); } #[test] fn point_new() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); EcPoint::new(&group).unwrap(); } #[test] fn point_bytes() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); let point = key.public_key(); let mut ctx = BigNumContext::new().unwrap(); let bytes = point .to_bytes(&group, PointConversionForm::COMPRESSED, &mut ctx) .unwrap(); let point2 = EcPoint::from_bytes(&group, &bytes, &mut ctx).unwrap(); assert!(point.eq(&group, &point2, &mut ctx).unwrap()); } #[test] fn point_owned() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); let point = key.public_key(); let owned = point.to_owned(&group).unwrap(); let mut ctx = BigNumContext::new().unwrap(); assert!(owned.eq(&group, point, &mut ctx).unwrap()); } #[test] fn mul_generator() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); let mut ctx = BigNumContext::new().unwrap(); let mut public_key = EcPoint::new(&group).unwrap(); public_key .mul_generator(&group, key.private_key(), &mut ctx) .unwrap(); assert!(public_key.eq(&group, key.public_key(), &mut ctx).unwrap()); } #[test] fn generator() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let gen = group.generator(); let one = BigNum::from_u32(1).unwrap(); let mut ctx = BigNumContext::new().unwrap(); let mut ecp = EcPoint::new(&group).unwrap(); ecp.mul_generator(&group, &one, &mut ctx).unwrap(); assert!(ecp.eq(&group, gen, &mut ctx).unwrap()); } #[test] fn key_from_public_key() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); let mut ctx = BigNumContext::new().unwrap(); let bytes = key .public_key() .to_bytes(&group, PointConversionForm::COMPRESSED, &mut ctx) .unwrap(); drop(key); let public_key = EcPoint::from_bytes(&group, &bytes, &mut ctx).unwrap(); let ec_key = EcKey::from_public_key(&group, &public_key).unwrap(); assert!(ec_key.check_key().is_ok()); } #[test] fn key_from_private_components() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let key = EcKey::generate(&group).unwrap(); let dup_key = EcKey::from_private_components(&group, key.private_key(), key.public_key()).unwrap(); let res = dup_key.check_key().unwrap(); assert!(res == ()); assert!(key.private_key() == dup_key.private_key()); } #[test] fn key_from_affine_coordinates() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let x = Vec::from_hex("30a0424cd21c2944838a2d75c92b37e76ea20d9f00893a3b4eee8a3c0aafec3e") .unwrap(); let y = Vec::from_hex("e04b65e92456d9888b52b379bdfbd51ee869ef1f0fc65b6659695b6cce081723") .unwrap(); let xbn = BigNum::from_slice(&x).unwrap(); let ybn = BigNum::from_slice(&y).unwrap(); let ec_key = EcKey::from_public_key_affine_coordinates(&group, &xbn, &ybn).unwrap(); assert!(ec_key.check_key().is_ok()); } #[test] fn get_affine_coordinates() { let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let x = Vec::from_hex("30a0424cd21c2944838a2d75c92b37e76ea20d9f00893a3b4eee8a3c0aafec3e") .unwrap(); let y = Vec::from_hex("e04b65e92456d9888b52b379bdfbd51ee869ef1f0fc65b6659695b6cce081723") .unwrap(); let xbn = BigNum::from_slice(&x).unwrap(); let ybn = BigNum::from_slice(&y).unwrap(); let ec_key = EcKey::from_public_key_affine_coordinates(&group, &xbn, &ybn).unwrap(); let mut xbn2 = BigNum::new().unwrap(); let mut ybn2 = BigNum::new().unwrap(); let mut ctx = BigNumContext::new().unwrap(); let ec_key_pk = ec_key.public_key(); ec_key_pk .affine_coordinates_gfp(&group, &mut xbn2, &mut ybn2, &mut ctx) .unwrap(); assert_eq!(xbn2, xbn); assert_eq!(ybn2, ybn); } }