1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
//! Public/private key processing. //! //! Asymmetric public key algorithms solve the problem of establishing and sharing //! secret keys to securely send and receive messages. //! This system uses a pair of keys: a public key, which can be freely //! distributed, and a private key, which is kept to oneself. An entity may //! encrypt information using a user's public key. The encrypted information can //! only be deciphered using that user's private key. //! //! This module offers support for five popular algorithms: //! //! * RSA //! //! * DSA //! //! * Diffie-Hellman //! //! * Elliptic Curves //! //! * HMAC //! //! These algorithms rely on hard mathematical problems - namely integer factorization, //! discrete logarithms, and elliptic curve relationships - that currently do not //! yield efficient solutions. This property ensures the security of these //! cryptographic algorithms. //! //! # Example //! //! Generate a 2048-bit RSA public/private key pair and print the public key. //! //! ```rust //! //! extern crate openssl; //! //! use openssl::rsa::Rsa; //! use openssl::pkey::PKey; //! use std::str; //! //! fn main() { //! let rsa = Rsa::generate(2048).unwrap(); //! let pkey = PKey::from_rsa(rsa).unwrap(); //! //! let pub_key: Vec<u8> = pkey.public_key_to_pem().unwrap(); //! println!("{:?}", str::from_utf8(pub_key.as_slice()).unwrap()); //! } //! ``` use ffi; use foreign_types::{ForeignType, ForeignTypeRef}; use libc::{c_int, c_long}; use std::ffi::CString; use std::mem; use std::ptr; use bio::MemBioSlice; use dh::Dh; use dsa::Dsa; use ec::EcKey; use error::ErrorStack; use rsa::Rsa; use util::{invoke_passwd_cb, CallbackState}; use {cvt, cvt_p}; /// A tag type indicating that a key only has parameters. pub enum Params {} /// A tag type indicating that a key only has public components. pub enum Public {} /// A tag type indicating that a key has private components. pub enum Private {} /// An identifier of a kind of key. #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub struct Id(c_int); impl Id { /// Creates a `Id` from an integer representation. pub fn from_raw(value: c_int) -> Id { Id(value) } /// Returns the integer representation of the `Id`. pub fn as_raw(&self) -> c_int { self.0 } pub const RSA: Id = Id(ffi::EVP_PKEY_RSA); pub const HMAC: Id = Id(ffi::EVP_PKEY_HMAC); pub const DSA: Id = Id(ffi::EVP_PKEY_DSA); pub const DH: Id = Id(ffi::EVP_PKEY_DH); pub const EC: Id = Id(ffi::EVP_PKEY_EC); #[cfg(ossl111)] pub const ED25519: Id = Id(ffi::EVP_PKEY_ED25519); #[cfg(ossl111)] pub const ED448: Id = Id(ffi::EVP_PKEY_ED448); } /// A trait indicating that a key has parameters. pub unsafe trait HasParams {} unsafe impl HasParams for Params {} unsafe impl<T> HasParams for T where T: HasPublic {} /// A trait indicating that a key has public components. pub unsafe trait HasPublic {} unsafe impl HasPublic for Public {} unsafe impl<T> HasPublic for T where T: HasPrivate {} /// A trait indicating that a key has private components. pub unsafe trait HasPrivate {} unsafe impl HasPrivate for Private {} generic_foreign_type_and_impl_send_sync! { type CType = ffi::EVP_PKEY; fn drop = ffi::EVP_PKEY_free; /// A public or private key. pub struct PKey<T>; /// Reference to `PKey`. pub struct PKeyRef<T>; } impl<T> ToOwned for PKeyRef<T> { type Owned = PKey<T>; fn to_owned(&self) -> PKey<T> { unsafe { EVP_PKEY_up_ref(self.as_ptr()); PKey::from_ptr(self.as_ptr()) } } } impl<T> PKeyRef<T> { /// Returns a copy of the internal RSA key. /// /// This corresponds to [`EVP_PKEY_get1_RSA`]. /// /// [`EVP_PKEY_get1_RSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_RSA.html pub fn rsa(&self) -> Result<Rsa<T>, ErrorStack> { unsafe { let rsa = cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr()))?; Ok(Rsa::from_ptr(rsa)) } } /// Returns a copy of the internal DSA key. /// /// This corresponds to [`EVP_PKEY_get1_DSA`]. /// /// [`EVP_PKEY_get1_DSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_DSA.html pub fn dsa(&self) -> Result<Dsa<T>, ErrorStack> { unsafe { let dsa = cvt_p(ffi::EVP_PKEY_get1_DSA(self.as_ptr()))?; Ok(Dsa::from_ptr(dsa)) } } /// Returns a copy of the internal DH key. /// /// This corresponds to [`EVP_PKEY_get1_DH`]. /// /// [`EVP_PKEY_get1_DH`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_DH.html pub fn dh(&self) -> Result<Dh<T>, ErrorStack> { unsafe { let dh = cvt_p(ffi::EVP_PKEY_get1_DH(self.as_ptr()))?; Ok(Dh::from_ptr(dh)) } } /// Returns a copy of the internal elliptic curve key. /// /// This corresponds to [`EVP_PKEY_get1_EC_KEY`]. /// /// [`EVP_PKEY_get1_EC_KEY`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_get1_EC_KEY.html pub fn ec_key(&self) -> Result<EcKey<T>, ErrorStack> { unsafe { let ec_key = cvt_p(ffi::EVP_PKEY_get1_EC_KEY(self.as_ptr()))?; Ok(EcKey::from_ptr(ec_key)) } } /// Returns the `Id` that represents the type of this key. /// /// This corresponds to [`EVP_PKEY_id`]. /// /// [`EVP_PKEY_id`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_id.html pub fn id(&self) -> Id { unsafe { Id::from_raw(ffi::EVP_PKEY_id(self.as_ptr())) } } /// Returns the maximum size of a signature in bytes. /// /// This corresponds to [`EVP_PKEY_size`]. /// /// [`EVP_PKEY_size`]: https://www.openssl.org/docs/man1.1.1/man3/EVP_PKEY_size.html pub fn size(&self) -> usize { unsafe { ffi::EVP_PKEY_size(self.as_ptr()) as usize } } } impl<T> PKeyRef<T> where T: HasPublic, { to_pem! { /// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure. /// /// The output will have a header of `-----BEGIN PUBLIC KEY-----`. /// /// This corresponds to [`PEM_write_bio_PUBKEY`]. /// /// [`PEM_write_bio_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_PUBKEY.html public_key_to_pem, ffi::PEM_write_bio_PUBKEY } to_der! { /// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure. /// /// This corresponds to [`i2d_PUBKEY`]. /// /// [`i2d_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/i2d_PUBKEY.html public_key_to_der, ffi::i2d_PUBKEY } /// Returns the size of the key. /// /// This corresponds to the bit length of the modulus of an RSA key, and the bit length of the /// group order for an elliptic curve key, for example. pub fn bits(&self) -> u32 { unsafe { ffi::EVP_PKEY_bits(self.as_ptr()) as u32 } } /// Compares the public component of this key with another. pub fn public_eq<U>(&self, other: &PKeyRef<U>) -> bool where U: HasPublic, { unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 } } } impl<T> PKeyRef<T> where T: HasPrivate, { private_key_to_pem! { /// Serializes the private key to a PEM-encoded PKCS#8 PrivateKeyInfo structure. /// /// The output will have a header of `-----BEGIN PRIVATE KEY-----`. /// /// This corresponds to [`PEM_write_bio_PKCS8PrivateKey`]. /// /// [`PEM_write_bio_PKCS8PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_write_bio_PKCS8PrivateKey.html private_key_to_pem_pkcs8, /// Serializes the private key to a PEM-encoded PKCS#8 EncryptedPrivateKeyInfo structure. /// /// The output will have a header of `-----BEGIN ENCRYPTED PRIVATE KEY-----`. /// /// This corresponds to [`PEM_write_bio_PKCS8PrivateKey`]. /// /// [`PEM_write_bio_PKCS8PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_write_bio_PKCS8PrivateKey.html private_key_to_pem_pkcs8_passphrase, ffi::PEM_write_bio_PKCS8PrivateKey } to_der! { /// Serializes the private key to a DER-encoded key type specific format. /// /// This corresponds to [`i2d_PrivateKey`]. /// /// [`i2d_PrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/i2d_PrivateKey.html private_key_to_der, ffi::i2d_PrivateKey } } impl<T> Clone for PKey<T> { fn clone(&self) -> PKey<T> { PKeyRef::to_owned(self) } } impl<T> PKey<T> { /// Creates a new `PKey` containing an RSA key. /// /// This corresponds to [`EVP_PKEY_assign_RSA`]. /// /// [`EVP_PKEY_assign_RSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_RSA.html pub fn from_rsa(rsa: Rsa<T>) -> Result<PKey<T>, ErrorStack> { unsafe { let evp = cvt_p(ffi::EVP_PKEY_new())?; let pkey = PKey::from_ptr(evp); cvt(ffi::EVP_PKEY_assign( pkey.0, ffi::EVP_PKEY_RSA, rsa.as_ptr() as *mut _, ))?; mem::forget(rsa); Ok(pkey) } } /// Creates a new `PKey` containing a DSA key. /// /// This corresponds to [`EVP_PKEY_assign_DSA`]. /// /// [`EVP_PKEY_assign_DSA`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_DSA.html pub fn from_dsa(dsa: Dsa<T>) -> Result<PKey<T>, ErrorStack> { unsafe { let evp = cvt_p(ffi::EVP_PKEY_new())?; let pkey = PKey::from_ptr(evp); cvt(ffi::EVP_PKEY_assign( pkey.0, ffi::EVP_PKEY_DSA, dsa.as_ptr() as *mut _, ))?; mem::forget(dsa); Ok(pkey) } } /// Creates a new `PKey` containing a Diffie-Hellman key. /// /// This corresponds to [`EVP_PKEY_assign_DH`]. /// /// [`EVP_PKEY_assign_DH`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_DH.html pub fn from_dh(dh: Dh<T>) -> Result<PKey<T>, ErrorStack> { unsafe { let evp = cvt_p(ffi::EVP_PKEY_new())?; let pkey = PKey::from_ptr(evp); cvt(ffi::EVP_PKEY_assign( pkey.0, ffi::EVP_PKEY_DH, dh.as_ptr() as *mut _, ))?; mem::forget(dh); Ok(pkey) } } /// Creates a new `PKey` containing an elliptic curve key. /// /// This corresponds to [`EVP_PKEY_assign_EC_KEY`]. /// /// [`EVP_PKEY_assign_EC_KEY`]: https://www.openssl.org/docs/man1.1.0/crypto/EVP_PKEY_assign_EC_KEY.html pub fn from_ec_key(ec_key: EcKey<T>) -> Result<PKey<T>, ErrorStack> { unsafe { let evp = cvt_p(ffi::EVP_PKEY_new())?; let pkey = PKey::from_ptr(evp); cvt(ffi::EVP_PKEY_assign( pkey.0, ffi::EVP_PKEY_EC, ec_key.as_ptr() as *mut _, ))?; mem::forget(ec_key); Ok(pkey) } } } impl PKey<Private> { /// Creates a new `PKey` containing an HMAC key. /// /// # Note /// /// To compute HMAC values, use the `sign` module. pub fn hmac(key: &[u8]) -> Result<PKey<Private>, ErrorStack> { unsafe { assert!(key.len() <= c_int::max_value() as usize); let key = cvt_p(ffi::EVP_PKEY_new_mac_key( ffi::EVP_PKEY_HMAC, ptr::null_mut(), key.as_ptr() as *const _, key.len() as c_int, ))?; Ok(PKey::from_ptr(key)) } } /// Creates a new `PKey` containing a CMAC key. /// /// Requires OpenSSL 1.1.0 or newer. /// /// # Note /// /// To compute CMAC values, use the `sign` module. #[cfg(ossl110)] pub fn cmac(cipher: &::symm::Cipher, key: &[u8]) -> Result<PKey<Private>, ErrorStack> { unsafe { assert!(key.len() <= c_int::max_value() as usize); let kctx = cvt_p(ffi::EVP_PKEY_CTX_new_id( ffi::EVP_PKEY_CMAC, ptr::null_mut(), ))?; let ret = (|| { cvt(ffi::EVP_PKEY_keygen_init(kctx))?; // Set cipher for cmac cvt(ffi::EVP_PKEY_CTX_ctrl( kctx, -1, ffi::EVP_PKEY_OP_KEYGEN, ffi::EVP_PKEY_CTRL_CIPHER, 0, cipher.as_ptr() as *mut _, ))?; // Set the key data cvt(ffi::EVP_PKEY_CTX_ctrl( kctx, -1, ffi::EVP_PKEY_OP_KEYGEN, ffi::EVP_PKEY_CTRL_SET_MAC_KEY, key.len() as c_int, key.as_ptr() as *mut _, ))?; Ok(()) })(); if let Err(e) = ret { // Free memory ffi::EVP_PKEY_CTX_free(kctx); return Err(e); } // Generate key let mut key = ptr::null_mut(); let ret = cvt(ffi::EVP_PKEY_keygen(kctx, &mut key)); // Free memory ffi::EVP_PKEY_CTX_free(kctx); if let Err(e) = ret { return Err(e); } Ok(PKey::from_ptr(key)) } } #[cfg(ossl110)] fn generate_eddsa(nid: c_int) -> Result<PKey<Private>, ErrorStack> { unsafe { let kctx = cvt_p(ffi::EVP_PKEY_CTX_new_id(nid, ptr::null_mut()))?; let ret = cvt(ffi::EVP_PKEY_keygen_init(kctx)); if let Err(e) = ret { ffi::EVP_PKEY_CTX_free(kctx); return Err(e); } let mut key = ptr::null_mut(); let ret = cvt(ffi::EVP_PKEY_keygen(kctx, &mut key)); ffi::EVP_PKEY_CTX_free(kctx); if let Err(e) = ret { return Err(e); } Ok(PKey::from_ptr(key)) } } /// Generates a new private Ed25519 key #[cfg(ossl111)] pub fn generate_ed25519() -> Result<PKey<Private>, ErrorStack> { PKey::generate_eddsa(ffi::EVP_PKEY_ED25519) } /// Generates a new private Ed448 key #[cfg(ossl111)] pub fn generate_ed448() -> Result<PKey<Private>, ErrorStack> { PKey::generate_eddsa(ffi::EVP_PKEY_ED448) } private_key_from_pem! { /// Deserializes a private key from a PEM-encoded key type specific format. /// /// This corresponds to [`PEM_read_bio_PrivateKey`]. /// /// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html private_key_from_pem, /// Deserializes a private key from a PEM-encoded encrypted key type specific format. /// /// This corresponds to [`PEM_read_bio_PrivateKey`]. /// /// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html private_key_from_pem_passphrase, /// Deserializes a private key from a PEM-encoded encrypted key type specific format. /// /// The callback should fill the password into the provided buffer and return its length. /// /// This corresponds to [`PEM_read_bio_PrivateKey`]. /// /// [`PEM_read_bio_PrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_read_bio_PrivateKey.html private_key_from_pem_callback, PKey<Private>, ffi::PEM_read_bio_PrivateKey } from_der! { /// Decodes a DER-encoded private key. /// /// This function will automatically attempt to detect the underlying key format, and /// supports the unencrypted PKCS#8 PrivateKeyInfo structures as well as key type specific /// formats. /// /// This corresponds to [`d2i_AutoPrivateKey`]. /// /// [`d2i_AutoPrivateKey`]: https://www.openssl.org/docs/man1.0.2/crypto/d2i_AutoPrivateKey.html private_key_from_der, PKey<Private>, ffi::d2i_AutoPrivateKey } /// Deserializes a DER-formatted PKCS#8 unencrypted private key. /// /// This method is mainly for interoperability reasons. Encrypted keyfiles should be preferred. pub fn private_key_from_pkcs8( der: &[u8], ) -> Result<PKey<Private>, ErrorStack> { unsafe { ffi::init(); let len = der.len().min(c_long::max_value() as usize) as c_long; let p8inf = cvt_p(ffi::d2i_PKCS8_PRIV_KEY_INFO( ptr::null_mut(), &mut der.as_ptr(), len, ))?; let res = cvt_p(ffi::EVP_PKCS82PKEY(p8inf)) .map(|p| PKey::from_ptr(p)); ffi::PKCS8_PRIV_KEY_INFO_free(p8inf); res } } /// Deserializes a DER-formatted PKCS#8 private key, using a callback to retrieve the password /// if the key is encrpyted. /// /// The callback should copy the password into the provided buffer and return the number of /// bytes written. pub fn private_key_from_pkcs8_callback<F>( der: &[u8], callback: F, ) -> Result<PKey<Private>, ErrorStack> where F: FnOnce(&mut [u8]) -> Result<usize, ErrorStack>, { unsafe { ffi::init(); let mut cb = CallbackState::new(callback); let bio = MemBioSlice::new(der)?; cvt_p(ffi::d2i_PKCS8PrivateKey_bio( bio.as_ptr(), ptr::null_mut(), Some(invoke_passwd_cb::<F>), &mut cb as *mut _ as *mut _, )) .map(|p| PKey::from_ptr(p)) } } /// Deserializes a DER-formatted PKCS#8 private key, using the supplied password if the key is /// encrypted. /// /// # Panics /// /// Panics if `passphrase` contains an embedded null. pub fn private_key_from_pkcs8_passphrase( der: &[u8], passphrase: &[u8], ) -> Result<PKey<Private>, ErrorStack> { unsafe { ffi::init(); let bio = MemBioSlice::new(der)?; let passphrase = CString::new(passphrase).unwrap(); cvt_p(ffi::d2i_PKCS8PrivateKey_bio( bio.as_ptr(), ptr::null_mut(), None, passphrase.as_ptr() as *const _ as *mut _, )) .map(|p| PKey::from_ptr(p)) } } } impl PKey<Public> { from_pem! { /// Decodes a PEM-encoded SubjectPublicKeyInfo structure. /// /// The input should have a header of `-----BEGIN PUBLIC KEY-----`. /// /// This corresponds to [`PEM_read_bio_PUBKEY`]. /// /// [`PEM_read_bio_PUBKEY`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_read_bio_PUBKEY.html public_key_from_pem, PKey<Public>, ffi::PEM_read_bio_PUBKEY } from_der! { /// Decodes a DER-encoded SubjectPublicKeyInfo structure. /// /// This corresponds to [`d2i_PUBKEY`]. /// /// [`d2i_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/d2i_PUBKEY.html public_key_from_der, PKey<Public>, ffi::d2i_PUBKEY } } cfg_if! { if #[cfg(any(ossl110, libressl270))] { use ffi::EVP_PKEY_up_ref; } else { unsafe extern "C" fn EVP_PKEY_up_ref(pkey: *mut ffi::EVP_PKEY) { ffi::CRYPTO_add_lock( &mut (*pkey).references, 1, ffi::CRYPTO_LOCK_EVP_PKEY, "pkey.rs\0".as_ptr() as *const _, line!() as c_int, ); } } } #[cfg(test)] mod tests { use dh::Dh; use dsa::Dsa; use ec::EcKey; use nid::Nid; use rsa::Rsa; use symm::Cipher; use super::*; #[test] fn test_to_password() { let rsa = Rsa::generate(2048).unwrap(); let pkey = PKey::from_rsa(rsa).unwrap(); let pem = pkey .private_key_to_pem_pkcs8_passphrase(Cipher::aes_128_cbc(), b"foobar") .unwrap(); PKey::private_key_from_pem_passphrase(&pem, b"foobar").unwrap(); assert!(PKey::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err()); } #[test] fn test_unencrypted_pkcs8() { let key = include_bytes!("../test/pkcs8-nocrypt.der"); PKey::private_key_from_pkcs8(key).unwrap(); } #[test] fn test_encrypted_pkcs8_passphrase() { let key = include_bytes!("../test/pkcs8.der"); PKey::private_key_from_pkcs8_passphrase(key, b"mypass").unwrap(); } #[test] fn test_encrypted_pkcs8_callback() { let mut password_queried = false; let key = include_bytes!("../test/pkcs8.der"); PKey::private_key_from_pkcs8_callback(key, |password| { password_queried = true; password[..6].copy_from_slice(b"mypass"); Ok(6) }) .unwrap(); assert!(password_queried); } #[test] fn test_private_key_from_pem() { let key = include_bytes!("../test/key.pem"); PKey::private_key_from_pem(key).unwrap(); } #[test] fn test_public_key_from_pem() { let key = include_bytes!("../test/key.pem.pub"); PKey::public_key_from_pem(key).unwrap(); } #[test] fn test_public_key_from_der() { let key = include_bytes!("../test/key.der.pub"); PKey::public_key_from_der(key).unwrap(); } #[test] fn test_private_key_from_der() { let key = include_bytes!("../test/key.der"); PKey::private_key_from_der(key).unwrap(); } #[test] fn test_pem() { let key = include_bytes!("../test/key.pem"); let key = PKey::private_key_from_pem(key).unwrap(); let priv_key = key.private_key_to_pem_pkcs8().unwrap(); let pub_key = key.public_key_to_pem().unwrap(); // As a super-simple verification, just check that the buffers contain // the `PRIVATE KEY` or `PUBLIC KEY` strings. assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY")); assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY")); } #[test] fn test_rsa_accessor() { let rsa = Rsa::generate(2048).unwrap(); let pkey = PKey::from_rsa(rsa).unwrap(); pkey.rsa().unwrap(); assert_eq!(pkey.id(), Id::RSA); assert!(pkey.dsa().is_err()); } #[test] fn test_dsa_accessor() { let dsa = Dsa::generate(2048).unwrap(); let pkey = PKey::from_dsa(dsa).unwrap(); pkey.dsa().unwrap(); assert_eq!(pkey.id(), Id::DSA); assert!(pkey.rsa().is_err()); } #[test] fn test_dh_accessor() { let dh = include_bytes!("../test/dhparams.pem"); let dh = Dh::params_from_pem(dh).unwrap(); let pkey = PKey::from_dh(dh).unwrap(); pkey.dh().unwrap(); assert_eq!(pkey.id(), Id::DH); assert!(pkey.rsa().is_err()); } #[test] fn test_ec_key_accessor() { let ec_key = EcKey::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); let pkey = PKey::from_ec_key(ec_key).unwrap(); pkey.ec_key().unwrap(); assert_eq!(pkey.id(), Id::EC); assert!(pkey.rsa().is_err()); } }