1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
//! A crate for safe and ergonomic [pin-projection]. //! //! # Examples //! //! [`#[pin_project]`][`pin_project`] attribute creates projection types //! covering all the fields of struct or enum. //! //! ```rust //! use pin_project::pin_project; //! use std::pin::Pin; //! //! #[pin_project] //! struct Struct<T, U> { //! #[pin] //! pinned: T, //! unpinned: U, //! } //! //! impl<T, U> Struct<T, U> { //! fn method(self: Pin<&mut Self>) { //! let this = self.project(); //! let _: Pin<&mut T> = this.pinned; // Pinned reference to the field //! let _: &mut U = this.unpinned; // Normal reference to the field //! } //! } //! ``` //! //! [*code like this will be generated*][struct-default-expanded] //! //! To use `#[pin_project]` on enums, you need to name the projection type //! returned from the method. //! //! ```rust //! use pin_project::pin_project; //! use std::pin::Pin; //! //! #[pin_project(project = EnumProj)] //! enum Enum<T, U> { //! Pinned(#[pin] T), //! Unpinned(U), //! } //! //! impl<T, U> Enum<T, U> { //! fn method(self: Pin<&mut Self>) { //! match self.project() { //! EnumProj::Pinned(x) => { //! let _: Pin<&mut T> = x; //! } //! EnumProj::Unpinned(y) => { //! let _: &mut U = y; //! } //! } //! } //! } //! ``` //! //! [*code like this will be generated*][enum-default-expanded] //! //! See [`#[pin_project]`][`pin_project`] attribute for more details, and //! see [examples] directory for more examples and generated code. //! //! [examples]: https://github.com/taiki-e/pin-project/blob/master/examples/README.md //! [enum-default-expanded]: https://github.com/taiki-e/pin-project/blob/master/examples/enum-default-expanded.rs //! [pin-projection]: core::pin#projections-and-structural-pinning //! [struct-default-expanded]: https://github.com/taiki-e/pin-project/blob/master/examples/struct-default-expanded.rs #![no_std] #![doc(html_root_url = "https://docs.rs/pin-project/1.0.1")] #![doc(test( no_crate_inject, attr(deny(warnings, rust_2018_idioms, single_use_lifetimes), allow(dead_code)) ))] #![warn(future_incompatible, rust_2018_idioms, single_use_lifetimes, unreachable_pub)] #![warn(missing_docs)] #![warn(clippy::all, clippy::default_trait_access)] // mem::take and #[non_exhaustive] requires Rust 1.40, matches! requires Rust 1.42 #![allow( clippy::mem_replace_with_default, clippy::manual_non_exhaustive, clippy::match_like_matches_macro )] #![allow(clippy::needless_doctest_main)] #[doc(inline)] pub use pin_project_internal::pin_project; #[doc(inline)] pub use pin_project_internal::pinned_drop; /// A trait used for custom implementations of [`Unpin`]. /// /// This trait is used in conjunction with the `UnsafeUnpin` argument to /// the [`#[pin_project]`][macro@pin_project] attribute. /// /// The Rust [`Unpin`] trait is safe to implement - by itself, /// implementing it cannot lead to [undefined behavior][undefined-behavior]. /// Undefined behavior can only occur when other unsafe code is used. /// /// It turns out that using pin projections, which requires unsafe code, /// imposes additional requirements on an [`Unpin`] impl. Normally, all of this /// unsafety is contained within this crate, ensuring that it's impossible for /// you to violate any of the guarantees required by pin projection. /// /// However, things change if you want to provide a custom [`Unpin`] impl /// for your `#[pin_project]` type. As stated in [the Rust /// documentation][pin-projection], you must be sure to only implement [`Unpin`] /// when all of your `#[pin]` fields (i.e. structurally pinned fields) are also /// [`Unpin`]. /// /// To help highlight this unsafety, the `UnsafeUnpin` trait is provided. /// Implementing this trait is logically equivalent to implementing [`Unpin`] - /// this crate will generate an [`Unpin`] impl for your type that 'forwards' to /// your `UnsafeUnpin` impl. However, this trait is `unsafe` - since your type /// uses structural pinning (otherwise, you wouldn't be using this crate!), /// you must be sure that your `UnsafeUnpin` impls follows all of /// the requirements for an [`Unpin`] impl of a structurally-pinned type. /// /// Note that if you specify `#[pin_project(UnsafeUnpin)]`, but do *not* /// provide an impl of `UnsafeUnpin`, your type will never implement [`Unpin`]. /// This is effectively the same thing as adding a [`PhantomPinned`] to your /// type. /// /// Since this trait is `unsafe`, impls of it will be detected by the /// `unsafe_code` lint, and by tools like [`cargo geiger`][cargo-geiger]. /// /// # Examples /// /// An `UnsafeUnpin` impl which, in addition to requiring that structurally /// pinned fields be [`Unpin`], imposes an additional requirement: /// /// ```rust /// use pin_project::{pin_project, UnsafeUnpin}; /// /// #[pin_project(UnsafeUnpin)] /// struct Struct<K, V> { /// #[pin] /// field_1: K, /// field_2: V, /// } /// /// unsafe impl<K, V> UnsafeUnpin for Struct<K, V> where K: Unpin + Clone {} /// ``` /// /// [`PhantomPinned`]: core::marker::PhantomPinned /// [cargo-geiger]: https://github.com/rust-secure-code/cargo-geiger /// [pin-projection]: core::pin#projections-and-structural-pinning /// [undefined-behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html pub unsafe trait UnsafeUnpin {} // Not public API. #[doc(hidden)] pub mod __private { #[doc(hidden)] pub use core::{ marker::{PhantomData, PhantomPinned, Unpin}, mem::ManuallyDrop, ops::Drop, pin::Pin, ptr, }; use super::UnsafeUnpin; #[doc(hidden)] pub use pin_project_internal::__PinProjectInternalDerive; // An internal trait used for custom implementations of [`Drop`]. // // **Do not call or implement this trait directly.** // // # Why this trait is private and `#[pinned_drop]` attribute is needed? // // Implementing `PinnedDrop::drop` is safe, but calling it is not safe. // This is because destructors can be called multiple times in safe code and // [double dropping is unsound][rust-lang/rust#62360]. // // Ideally, it would be desirable to be able to forbid manual calls in // the same way as [`Drop::drop`], but the library cannot do it. So, by using // macros and replacing them with private traits, // this crate prevent users from calling `PinnedDrop::drop` in safe code. // // This allows implementing [`Drop`] safely using `#[pinned_drop]`. // Also by using the [`drop`] function just like dropping a type that directly // implements [`Drop`], can drop safely a type that implements `PinnedDrop`. // // [rust-lang/rust#62360]: https://github.com/rust-lang/rust/pull/62360 #[doc(hidden)] pub trait PinnedDrop { #[doc(hidden)] unsafe fn drop(self: Pin<&mut Self>); } // This is an internal helper struct used by `pin-project-internal`. // This allows us to force an error if the user tries to provide // a regular `Unpin` impl when they specify the `UnsafeUnpin` argument. // This is why we need Wrapper: // // Supposed we have the following code: // // ```rust // #[pin_project(UnsafeUnpin)] // struct MyStruct<T> { // #[pin] field: T // } // // impl<T> Unpin for MyStruct<T> where MyStruct<T>: UnsafeUnpin {} // generated by pin-project-internal // impl<T> Unpin for MyStruct<T> where T: Copy // written by the user // ``` // // We want this code to be rejected - the user is completely bypassing // `UnsafeUnpin`, and providing an unsound Unpin impl in safe code! // // Unfortunately, the Rust compiler will accept the above code. // Because MyStruct is declared in the same crate as the user-provided impl, // the compiler will notice that `MyStruct<T>: UnsafeUnpin` never holds. // // The solution is to introduce the `Wrapper` struct, which is defined // in the `pin-project` crate. // // We now have code that looks like this: // // ```rust // impl<T> Unpin for MyStruct<T> where Wrapper<MyStruct<T>>: UnsafeUnpin {} // generated by pin-project-internal // impl<T> Unpin for MyStruct<T> where T: Copy // written by the user // ``` // // We also have `unsafe impl<T> UnsafeUnpin for Wrapper<T> where T: UnsafeUnpin {}` // in the `pin-project` crate. // // Now, our generated impl has a bound involving a type defined in another // crate - Wrapper. This will cause rust to conservatively assume that // `Wrapper<MyStruct<T>>: UnsafeUnpin` holds, in the interest of preserving // forwards compatibility (in case such an impl is added for Wrapper<T> in // a new version of the crate). // // This will cause rust to reject any other `Unpin` impls for MyStruct<T>, // since it will assume that our generated impl could potentially apply in // any situation. // // This achieves the desired effect - when the user writes // `#[pin_project(UnsafeUnpin)]`, the user must either provide no impl of // `UnsafeUnpin` (which is equivalent to making the type never implement // Unpin), or provide an impl of `UnsafeUnpin`. It is impossible for them to // provide an impl of `Unpin` #[doc(hidden)] pub struct Wrapper<'a, T: ?Sized>(PhantomData<&'a ()>, T); unsafe impl<T: ?Sized> UnsafeUnpin for Wrapper<'_, T> where T: UnsafeUnpin {} // This is an internal helper struct used by `pin-project-internal`. // // See https://github.com/taiki-e/pin-project/pull/53 for more details. #[doc(hidden)] pub struct AlwaysUnpin<'a, T>(PhantomData<&'a ()>, PhantomData<T>); impl<T> Unpin for AlwaysUnpin<'_, T> {} // This is an internal helper used to ensure a value is dropped. #[doc(hidden)] pub struct UnsafeDropInPlaceGuard<T: ?Sized>(pub *mut T); impl<T: ?Sized> Drop for UnsafeDropInPlaceGuard<T> { fn drop(&mut self) { unsafe { ptr::drop_in_place(self.0); } } } // This is an internal helper used to ensure a value is overwritten without // its destructor being called. #[doc(hidden)] pub struct UnsafeOverwriteGuard<T> { pub value: ManuallyDrop<T>, pub target: *mut T, } impl<T> Drop for UnsafeOverwriteGuard<T> { fn drop(&mut self) { unsafe { ptr::write(self.target, ptr::read(&*self.value)); } } } }