1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use crate::{FileWrapper, ProcError, ProcResult};

use std::collections::HashMap;
use std::io::{BufRead, BufReader, Read};
use std::str::FromStr;

use libc::rlim_t;

impl crate::process::Process {
    /// Return the limits for this process
    pub fn limits(&self) -> ProcResult<Limits> {
        let path = self.root.join("limits");
        let file = FileWrapper::open(&path)?;
        Limits::from_reader(file)
    }
}

/// Process limits
///
/// For more details about each of these limits, see the `getrlimit` man page.
#[derive(Debug, Clone)]
pub struct Limits {
    /// Max Cpu Time
    ///
    /// This is a limit, in seconds, on the amount of CPU time that the process can consume.
    pub max_cpu_time: Limit,

    /// Max file size
    ///
    /// This is the maximum size in bytes of files that the process may create.
    pub max_file_size: Limit,

    /// Max data size
    ///
    /// This is the maximum size of the process's data segment (initialized data, uninitialized
    /// data, and heap).
    pub max_data_size: Limit,

    /// Max stack size
    ///
    /// This is the maximum size of the process stack, in bytes.
    pub max_stack_size: Limit,

    /// Max core file size
    ///
    /// This is the maximum size of a *core* file in bytes that the process may dump.
    pub max_core_file_size: Limit,

    /// Max resident set
    ///
    /// This is a limit (in bytes) on the processe's resident set (the number of virtual pages
    /// resident in RAM).
    pub max_resident_set: Limit,

    /// Max processes
    ///
    /// This is a limit on the number of extant process (or, more precisely on Linux, threads) for
    /// the real user rID of the calling process.
    pub max_processes: Limit,

    /// Max open files
    ///
    /// This specifies a value one greater than the maximum file descriptor number that can be
    /// opened by this process.
    pub max_open_files: Limit,

    /// Max locked memory
    ///
    /// This is the maximum number of bytes of memory that may be locked into RAM.
    pub max_locked_memory: Limit,

    /// Max address space
    ///
    /// This is the maximum size of the process's virtual memory (address space).
    pub max_address_space: Limit,

    /// Max file locks
    ///
    /// This is a limit on the combined number of flock locks and fcntl leases that this process
    /// may establish.
    pub max_file_locks: Limit,

    /// Max pending signals
    ///
    /// This is a limit on the number of signals that may be qeueued for the real user rID of the
    /// calling process.
    pub max_pending_signals: Limit,

    /// Max msgqueue size
    ///
    /// This is a limit on the number of bytes that can be allocated for POSIX message queues for
    /// the real user rID of the calling process.
    pub max_msgqueue_size: Limit,

    /// Max nice priority
    ///
    /// This specifies a ceiling to which the process's nice value can be raised using
    /// `setpriority` or `nice`.
    pub max_nice_priority: Limit,

    /// Max realtime priority
    ///
    /// This specifies a ceiling on the real-time priority that may be set for this process using
    /// `sched_setscheduler` and `sched_setparam`.
    pub max_realtime_priority: Limit,

    /// Max realtime timeout
    ///
    /// This is a limit (in microseconds) on the amount of CPU time that a process scheduled under
    /// a real-time scheduling policy may consume without making a blocking system call.
    pub max_realtime_timeout: Limit,
}

impl Limits {
    fn from_reader<R: Read>(r: R) -> ProcResult<Limits> {
        let bufread = BufReader::new(r);
        let mut lines = bufread.lines();

        let mut map = HashMap::new();

        while let Some(Ok(line)) = lines.next() {
            let line = line.trim();
            if line.starts_with("Limit") {
                continue;
            }
            let s: Vec<_> = line.split_whitespace().collect();
            let l = s.len();

            let (hard_limit, soft_limit, name) = if line.starts_with("Max nice priority")
                || line.starts_with("Max realtime priority")
            {
                // these two limits don't have units, and so need different offsets:
                let hard_limit = expect!(s.get(l - 1)).to_owned();
                let soft_limit = expect!(s.get(l - 2)).to_owned();
                let name = s[0..l - 2].join(" ");
                (hard_limit, soft_limit, name)
            } else {
                let hard_limit = expect!(s.get(l - 2)).to_owned();
                let soft_limit = expect!(s.get(l - 3)).to_owned();
                let name = s[0..l - 3].join(" ");
                (hard_limit, soft_limit, name)
            };
            let _units = expect!(s.get(l - 1));

            map.insert(
                name.to_owned(),
                (soft_limit.to_owned(), hard_limit.to_owned()),
            );
        }

        let limits = Limits {
            max_cpu_time: Limit::from_pair(expect!(map.remove("Max cpu time")))?,
            max_file_size: Limit::from_pair(expect!(map.remove("Max file size")))?,
            max_data_size: Limit::from_pair(expect!(map.remove("Max data size")))?,
            max_stack_size: Limit::from_pair(expect!(map.remove("Max stack size")))?,
            max_core_file_size: Limit::from_pair(expect!(map.remove("Max core file size")))?,
            max_resident_set: Limit::from_pair(expect!(map.remove("Max resident set")))?,
            max_processes: Limit::from_pair(expect!(map.remove("Max processes")))?,
            max_open_files: Limit::from_pair(expect!(map.remove("Max open files")))?,
            max_locked_memory: Limit::from_pair(expect!(map.remove("Max locked memory")))?,
            max_address_space: Limit::from_pair(expect!(map.remove("Max address space")))?,
            max_file_locks: Limit::from_pair(expect!(map.remove("Max file locks")))?,
            max_pending_signals: Limit::from_pair(expect!(map.remove("Max pending signals")))?,
            max_msgqueue_size: Limit::from_pair(expect!(map.remove("Max msgqueue size")))?,
            max_nice_priority: Limit::from_pair(expect!(map.remove("Max nice priority")))?,
            max_realtime_priority: Limit::from_pair(expect!(map.remove("Max realtime priority")))?,
            max_realtime_timeout: Limit::from_pair(expect!(map.remove("Max realtime timeout")))?,
        };
        if cfg!(test) {
            assert!(map.is_empty(), "Map isn't empty: {:?}", map);
        }
        Ok(limits)
    }
}

#[derive(Debug, Copy, Clone)]
pub struct Limit {
    pub soft_limit: LimitValue,
    pub hard_limit: LimitValue,
}

impl Limit {
    fn from_pair(l: (String, String)) -> ProcResult<Limit> {
        let (soft, hard) = l;
        Ok(Limit {
            soft_limit: LimitValue::from_str(&soft)?,
            hard_limit: LimitValue::from_str(&hard)?,
        })
    }
}

#[derive(Debug, Copy, Clone)]
pub enum LimitValue {
    Unlimited,
    Value(rlim_t),
}

impl LimitValue {
    #[cfg(test)]
    pub(crate) fn as_rlim_t(&self) -> libc::rlim_t {
        match self {
            LimitValue::Unlimited => libc::RLIM_INFINITY,
            LimitValue::Value(v) => *v,
        }
    }
}

impl FromStr for LimitValue {
    type Err = ProcError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s == "unlimited" {
            Ok(LimitValue::Unlimited)
        } else {
            Ok(LimitValue::Value(from_str!(rlim_t, s)))
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_limits() {
        let me = process::Process::myself().unwrap();
        let limits = me.limits().unwrap();
        println!("{:#?}", limits);

        let mut libc_lim = libc::rlimit {
            rlim_cur: 0,
            rlim_max: 0,
        };

        // Max cpu time
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_CPU, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_cpu_time.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_cpu_time.hard_limit.as_rlim_t()
        );

        // Max file size
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_FSIZE, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_file_size.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_file_size.hard_limit.as_rlim_t()
        );

        // Max data size
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_DATA, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_data_size.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_data_size.hard_limit.as_rlim_t()
        );

        // Max stack size
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_STACK, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_stack_size.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_stack_size.hard_limit.as_rlim_t()
        );

        // Max core file size
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_CORE, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_core_file_size.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_core_file_size.hard_limit.as_rlim_t()
        );

        // Max resident set
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_RSS, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_resident_set.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_resident_set.hard_limit.as_rlim_t()
        );

        // Max processes
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_NPROC, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_processes.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_processes.hard_limit.as_rlim_t()
        );

        // Max open files
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_NOFILE, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_open_files.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_open_files.hard_limit.as_rlim_t()
        );

        // Max locked memory
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_MEMLOCK, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_locked_memory.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_locked_memory.hard_limit.as_rlim_t()
        );

        // Max address space
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_AS, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_address_space.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_address_space.hard_limit.as_rlim_t()
        );

        // Max file locks
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_LOCKS, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_file_locks.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_file_locks.hard_limit.as_rlim_t()
        );

        // Max pending signals
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_SIGPENDING, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_pending_signals.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_pending_signals.hard_limit.as_rlim_t()
        );

        // Max msgqueue size
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_MSGQUEUE, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_msgqueue_size.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_msgqueue_size.hard_limit.as_rlim_t()
        );

        // Max nice priority
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_NICE, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_nice_priority.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_nice_priority.hard_limit.as_rlim_t()
        );

        // Max realtime priority
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_RTPRIO, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_realtime_priority.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_realtime_priority.hard_limit.as_rlim_t()
        );

        // Max realtime timeout
        assert_eq!(
            unsafe { libc::getrlimit(libc::RLIMIT_RTTIME, &mut libc_lim) },
            0
        );
        assert_eq!(
            libc_lim.rlim_cur,
            limits.max_realtime_timeout.soft_limit.as_rlim_t()
        );
        assert_eq!(
            libc_lim.rlim_max,
            limits.max_realtime_timeout.hard_limit.as_rlim_t()
        );
    }
}