1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//! Parsers and utility functions.

use std::borrow::ToOwned;
use std::fs::File;
use std::io::{Error, ErrorKind, Read, Result};
use std::str::{self, FromStr};

use byteorder::{ByteOrder, LittleEndian};
use libc::clock_t;
use nom::{
    alphanumeric,
    digit,
    Err,
    IResult,
    is_digit,
    not_line_ending,
    space
};
use nom::ErrorKind::Digit;

/// Read all bytes in the file until EOF, placing them into `buf`.
///
/// All bytes read from this source will be written to `buf`.  If `buf` is not large enough an
/// underflow error will be returned. This function will continuously call `read` to append more
/// data to `buf` until read returns either `Ok(0)`, or an error of non-`ErrorKind::Interrupted`
/// kind.
///
/// If successful, this function will return the slice of read bytes.
///
/// # Errors
///
/// If this function encounters an error of the kind `ErrorKind::Interrupted` then the error is
/// ignored and the operation will continue.
///
/// If any other read error is encountered then this function immediately returns.  Any bytes which
/// have already been read will be written to `buf`.
///
/// If `buf` is not large enough to hold the file, an underflow error will be returned.
pub fn read_to_end<'a>(file: &mut File, buf: &'a mut [u8]) -> Result<&'a mut [u8]> {
    let mut from = 0;

    loop {
        if from == buf.len() {
            return Err(Error::new(ErrorKind::Other, "read underflow"));
        }
        match file.read(&mut buf[from..]) {
            Ok(0) => return Ok(&mut buf[..from]),
            Ok(n) => from += n,
            Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
            Err(e) => return Err(e),
        }
    }
}

/// Transforms a `nom` parse result into a io result.
///
/// The parser must completely consume the input.
pub fn map_result<T>(result: IResult<&[u8], T>) -> Result<T> {
    match result {
        IResult::Done(remaining, val) => {
            if remaining.is_empty() {
                Ok(val)
            } else {
                let remaining = str::from_utf8(remaining);
                Err(Error::new(ErrorKind::InvalidInput,
                               format!("unable to parse whole input, remaining: {:?}", remaining)))
            }
        }
        IResult::Error(err) => Err(Error::new(ErrorKind::InvalidInput,
                                              format!("unable to parse input: {:?}", err))),
        _ => Err(Error::new(ErrorKind::InvalidInput, "unable to parse input")),
    }
}


/// Recognizes numerical characters: 0-9, and periods: '.'.
fn fdigit(input: &[u8]) -> IResult<&[u8], &[u8]> {
    for idx in 0..input.len() {
        if (!is_digit(input[idx])) && ('.' as u8 != input[idx]) {
            return IResult::Done(&input[idx..], &input[0..idx])
        }
    }
    IResult::Done(b"", input)
}

/// Recognizes numerical characters: 0-9, and an optional leading dash: '-'.
pub fn sdigit(input:&[u8]) -> IResult<&[u8], &[u8]> {
    if input.is_empty() {
        return IResult::Done(b"", input)
    }

    let start = if input[0] == '-' as u8 { 1 } else { 0 };
    for (idx, item) in input.iter().enumerate().skip(start) {
        if !is_digit(*item) {
            if idx == start {
                return IResult::Error(Err::Position(Digit, input));
            } else {
                return IResult::Done(&input[idx..], &input[0..idx]);
            }
        }
    }
    IResult::Done(b"", input)
}

/// Parses a line to a string.
named!(pub parse_line<String>,
       map!(map_res!(not_line_ending, str::from_utf8), ToOwned::to_owned));

/// Parses a clock_t in base-10 format.
named!(pub parse_clock<clock_t>,
       map_res!(map_res!(sdigit, str::from_utf8), FromStr::from_str));

/// Parses an i32 in base-10 format.
named!(pub parse_i32<i32>,
       map_res!(map_res!(sdigit, str::from_utf8), FromStr::from_str));

/// Parses an i64 in base-10 format.
named!(pub parse_i64<i64>,
       map_res!(map_res!(sdigit, str::from_utf8), FromStr::from_str));

/// Parses an isize in base-10 format.
named!(pub parse_isize<isize>,
       map_res!(map_res!(sdigit, str::from_utf8), FromStr::from_str));

/// Parses a u32 in base-10 format.
named!(pub parse_u32<u32>,
       map_res!(map_res!(digit, str::from_utf8), FromStr::from_str));

/// Parses a u64 in base-10 format.
named!(pub parse_u64<u64>,
       map_res!(map_res!(digit, str::from_utf8), FromStr::from_str));

/// Parses a usize in base-10 format.
named!(pub parse_usize<usize>,
       map_res!(map_res!(digit, str::from_utf8), FromStr::from_str));

/// Parses a f32 in base-10 format.
named!(pub parse_f32<f32>,
      map_res!(map_res!(fdigit, str::from_utf8), FromStr::from_str));

/// Parses a sequence of whitespace seperated u32s.
named!(pub parse_u32s<Vec<u32> >, separated_list!(space, complete!(parse_u32)));

/// Parses a sequence of whitespace seperated i32s.
named!(pub parse_i32s<Vec<i32> >, separated_list!(space, parse_i32));

/// Parses a bit into a boolean
named!(pub parse_bit<bool>, alt!(
          char!('0') => { |_| false }
        | char!('1') => { |_| true }
));

/// Parses a usize followed by a kB unit tag.
named!(pub parse_kb<usize>,
       chain!(space ~ bytes: parse_usize ~ space ~ tag!("kB"), || { bytes }));

/// Parses a u32 in base-16 format.
named!(pub parse_u32_hex<u32>,
       map_res!(map_res!(alphanumeric, str::from_utf8),
                |s| u32::from_str_radix(s, 16)));

/// Parses a u32 in base-8 format.
named!(pub parse_u32_octal<u32>,
       map_res!(map_res!(alphanumeric, str::from_utf8),
                |s| u32::from_str_radix(s, 8)));

/// Parses a u64 in base-16 format.
named!(pub parse_u64_hex<u64>,
       map_res!(map_res!(alphanumeric, str::from_utf8),
                |s| u64::from_str_radix(s, 16)));

/// Reverses the bits in a byte.
fn reverse(n: u8) -> u8 {
    // stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
    const LOOKUP: [u8; 16] = [ 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
                               0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf ];
    (LOOKUP[(n & 0b1111) as usize] << 4) | LOOKUP[(n >> 4) as usize]
}

/// Parses a list of u32 masks into an array of bytes in `BitVec` format.
///
/// See cpuset(7) for the format being parsed.
named!(pub parse_u32_mask_list<Box<[u8]> >,
       map!(separated_nonempty_list!(tag!(","), parse_u32_hex), |mut ints: Vec<u32>| {
           let mut bytes: Vec<u8> = Vec::with_capacity(ints.len() * 4);
           let mut buf: [u8; 4] = [0; 4];
           ints.reverse();
           for int in ints {
               LittleEndian::write_u32(&mut buf, int);
               for b in buf.iter_mut() {
                   *b = reverse(*b);
               }
               bytes.extend(&buf);
           }
           bytes.into_boxed_slice()
       }));

/// `take_until_right_and_consume!(tag) => &[T] -> IResult<&[T], &[T]>`
/// generates a parser consuming bytes until the specified byte sequence is found, and consumes it.
/// The sequence is searched for in the input in right to left order.
macro_rules! take_until_right_and_consume(
    ($i:expr, $inp:expr) => ({
        #[inline(always)]
        fn as_bytes<T: nom::AsBytes>(b: &T) -> &[u8] {
            b.as_bytes()
        }

        let expected   = $inp;
        let bytes      = as_bytes(&expected);
        let mut index  = 0;
        let mut parsed = false;
        for idx in (0..(($i.len() + 1) - bytes.len())).rev() {
            if &$i[idx..idx + bytes.len()] == bytes {
                index = idx;
                parsed = true;
                break;
            }
        }
        if parsed {
            nom::IResult::Done(&$i[(index + bytes.len())..], &$i[0..index])
        } else {
            nom::IResult::Error(nom::Err::Position(nom::ErrorKind::TakeUntilAndConsume, $i))
        }
    });
);

#[cfg(test)]
pub mod tests {
    use std::u32;

    use nom::IResult;

    use super::{map_result, parse_f32, parse_i32, parse_i32s, parse_bit, parse_i64, parse_u32_hex,
                parse_u32_mask_list, parse_u32s, reverse};

    /// Unwrap a complete parse result.
    pub fn unwrap<T>(result: IResult<&[u8], T>) -> T {
        map_result(result).unwrap()
    }

    #[test]
    fn test_reverse() {
        assert_eq!(0b00000000, reverse(0b00000000));
        assert_eq!(0b00000010, reverse(0b01000000));
        assert_eq!(0b00011000, reverse(0b00011000));
        assert_eq!(0b01011000, reverse(0b00011010));
        assert_eq!(0b11111111, reverse(0b11111111));
    }

    #[test]
    fn test_parse_u32_hex() {
        assert_eq!(0, unwrap(parse_u32_hex(b"00000000")));
        assert_eq!(1, unwrap(parse_u32_hex(b"00000001")));
        assert_eq!(42, unwrap(parse_u32_hex(b"0000002a")));
        assert_eq!(286331153, unwrap(parse_u32_hex(b"11111111")));
        assert_eq!(u32::MAX, unwrap(parse_u32_hex(b"ffffffff")));
    }

    #[test]
    fn test_u32_mask_list() {
        // Examples adapted from cpuset(7).
        assert_eq!([0, 0, 0, 0], &*unwrap(parse_u32_mask_list(b"00000000")));

        assert_eq!([0x80, 0, 0, 0], &*unwrap(parse_u32_mask_list(b"00000001")));

        assert_eq!([0, 0, 0, 0,
                    0, 0, 0, 0,
                    0, 0, 0, 2], &*unwrap(parse_u32_mask_list(b"40000000,00000000,00000000")));

        assert_eq!([0, 0, 0, 0,
                    0, 0, 0, 0,
                    128, 0, 0, 0], &*unwrap(parse_u32_mask_list(b"00000001,00000000,00000000")));

        assert_eq!([0, 0, 0, 0,
                    0xff, 0, 0, 0], &*unwrap(parse_u32_mask_list(b"000000ff,00000000")));

        assert_eq!([0x46, 0x1c, 0x70, 0,
                    0, 0, 0, 0], &*unwrap(parse_u32_mask_list(b"00000000,000e3862")));
    }

    #[test]
    fn test_parse_u32s() {
        assert_eq!(Vec::<u32>::new(), &*unwrap(parse_u32s(b"")));
        assert_eq!(vec![0u32], &*unwrap(parse_u32s(b"0")));
        assert_eq!(vec![0u32, 1], &*unwrap(parse_u32s(b"0 1")));
        assert_eq!(vec![99999u32, 32, 22, 888], &*unwrap(parse_u32s(b"99999 32 22 	888")));
    }

    #[test]
    fn test_parse_i32s() {
        assert_eq!(Vec::<i32>::new(), &*unwrap(parse_i32s(b"")));
        assert_eq!(vec![0i32], &*unwrap(parse_i32s(b"0")));
        assert_eq!(vec![0i32, 1], &*unwrap(parse_i32s(b"0 1")));
        assert_eq!(vec![99999i32, 0, -22, 32, 888], &*unwrap(parse_i32s(b"99999 0 -22 32 888")));
    }

    #[test]
    fn test_parse_i32() {
        assert_eq!(0i32, unwrap(parse_i32(b"0")));
        assert_eq!(0i32, unwrap(parse_i32(b"-0")));
        assert_eq!(32i32, unwrap(parse_i32(b"32")));
        assert_eq!(-32i32, unwrap(parse_i32(b"-32")));
    }

    #[test]
    fn test_parse_i64() {
        assert_eq!(0i64, unwrap(parse_i64(b"0")));
        assert_eq!(0i64, unwrap(parse_i64(b"-0")));
        assert_eq!(32i64, unwrap(parse_i64(b"32")));
        assert_eq!(-32i64, unwrap(parse_i64(b"-32")));
    }

    #[test]
    fn test_parse_f32() {
        assert_eq!(0.0, unwrap(parse_f32(b"0")));
        assert_eq!(0.0, unwrap(parse_f32(b"0.0")));
        assert_eq!(2.0, unwrap(parse_f32(b"2.0")));
        assert_eq!(45.67, unwrap(parse_f32(b"45.67")));
    }

    #[test]
    fn test_parse_bit() {
        assert_eq!(true, unwrap(parse_bit(b"1")));
        assert_eq!(false, unwrap(parse_bit(b"0")));
    }
}