1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
//! standard die. [`Rng::gen_range`] supports any type supported by
//! [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
//! (all integer and floating-point types) as well as [`std::time::Duration`],
//! and supports extension to user-defined types via a type-specific *back-end*
//! implementation.
//!
//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
//! back-ends supporting sampling from primitive integer and floating-point
//! ranges as well as from [`std::time::Duration`]; these types do not normally
//! need to be used directly (unless implementing a derived back-end).
//!
//! # Example usage
//!
//! ```
//! use rand::{Rng, thread_rng};
//! use rand::distributions::Uniform;
//!
//! let mut rng = thread_rng();
//! let side = Uniform::new(-10.0, 10.0);
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.gen_range(1..=10) {
//!     // sample a point from the square with sides -10 - 10 in two dimensions
//!     let (x, y) = (rng.sample(side), rng.sample(side));
//!     println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assert to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
//! type SampleBorrow<X> in order to support passing in values by reference or
//! by value. In the implementation of these functions, you can choose to
//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
//! to copy or clone the value, whatever is appropriate for your type.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distributions::uniform::{Uniform, SampleUniform,
//!         UniformSampler, UniformFloat, SampleBorrow};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32(UniformFloat<f32>);
//!
//! impl UniformSampler for UniformMyF32 {
//!     type X = MyF32;
//!     fn new<B1, B2>(low: B1, high: B2) -> Self
//!         where B1: SampleBorrow<Self::X> + Sized,
//!               B2: SampleBorrow<Self::X> + Sized
//!     {
//!         UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0))
//!     }
//!     fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
//!         where B1: SampleBorrow<Self::X> + Sized,
//!               B2: SampleBorrow<Self::X> + Sized
//!     {
//!         UniformSampler::new(low, high)
//!     }
//!     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//!         MyF32(self.0.sample(rng))
//!     }
//! }
//!
//! impl SampleUniform for MyF32 {
//!     type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high);
//! let x = uniform.sample(&mut thread_rng());
//! ```
//!
//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
//! [`UniformInt`]: crate::distributions::uniform::UniformInt
//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow

#[cfg(not(feature = "std"))] use core::time::Duration;
#[cfg(feature = "std")] use std::time::Duration;
use core::ops::{Range, RangeInclusive};

use crate::distributions::float::IntoFloat;
use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply};
use crate::distributions::Distribution;
use crate::{Rng, RngCore};

#[cfg(not(feature = "std"))]
#[allow(unused_imports)] // rustc doesn't detect that this is actually used
use crate::distributions::utils::Float;

#[cfg(feature = "simd_support")] use packed_simd::*;

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};

/// Sample values uniformly between two bounds.
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given range; these functions may do extra
/// work up front to make sampling of multiple values faster. If only one sample
/// from the range is required, [`Rng::gen_range`] can be more efficient.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types this should have comparable performance to
/// the `Standard` distribution.
///
/// Steps are taken to avoid bias which might be present in naive
/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
/// values. Further, the implementations here give more weight to the high-bits
/// generated by the RNG than the low bits, since with some RNGs the low-bits
/// are of lower quality than the high bits.
///
/// Implementations must sample in `[low, high)` range for
/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
/// be taken to ensure that rounding never results values `< low` or `>= high`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Distribution, Uniform};
///
/// let between = Uniform::from(10..10000);
/// let mut rng = rand::thread_rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
///     sum += between.sample(&mut rng);
/// }
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::gen_range`] may be prefered:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::thread_rng();
/// println!("{}", rng.gen_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::gen_range`]: Rng::gen_range
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Uniform<X: SampleUniform>(X::Sampler);

impl<X: SampleUniform> Uniform<X> {
    /// Create a new `Uniform` instance which samples uniformly from the half
    /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
    pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
    where
        B1: SampleBorrow<X> + Sized,
        B2: SampleBorrow<X> + Sized,
    {
        Uniform(X::Sampler::new(low, high))
    }

    /// Create a new `Uniform` instance which samples uniformly from the closed
    /// range `[low, high]` (inclusive). Panics if `low > high`.
    pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
    where
        B1: SampleBorrow<X> + Sized,
        B2: SampleBorrow<X> + Sized,
    {
        Uniform(X::Sampler::new_inclusive(low, high))
    }
}

impl<X: SampleUniform> Distribution<X> for Uniform<X> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
        self.0.sample(rng)
    }
}

/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [module documentation]: crate::distributions::uniform
pub trait SampleUniform: Sized {
    /// The `UniformSampler` implementation supporting type `X`.
    type Sampler: UniformSampler<X = Self>;
}

/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: crate::distributions::uniform
/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
    /// The type sampled by this implementation.
    type X;

    /// Construct self, with inclusive lower bound and exclusive upper bound
    /// `[low, high)`.
    ///
    /// Usually users should not call this directly but instead use
    /// `Uniform::new`, which asserts that `low < high` before calling this.
    fn new<B1, B2>(low: B1, high: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized;

    /// Construct self, with inclusive bounds `[low, high]`.
    ///
    /// Usually users should not call this directly but instead use
    /// `Uniform::new_inclusive`, which asserts that `low <= high` before
    /// calling this.
    fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized;

    /// Sample a value.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;

    /// Sample a single value uniformly from a range with inclusive lower bound
    /// and exclusive upper bound `[low, high)`.
    ///
    /// By default this is implemented using
    /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
    /// more optimal implementations for single usage may be provided via this
    /// method (which is the case for integers and floats).
    /// Results may not be identical.
    ///
    /// Note that to use this method in a generic context, the type needs to be
    /// retrieved via `SampleUniform::Sampler` as follows:
    /// ```
    /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}};
    /// # #[allow(unused)]
    /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
    ///     let mut rng = thread_rng();
    ///     <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng)
    /// }
    /// ```
    fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let uniform: Self = UniformSampler::new(low, high);
        uniform.sample(rng)
    }

    /// Sample a single value uniformly from a range with inclusive lower bound
    /// and inclusive upper bound `[low, high]`.
    ///
    /// By default this is implemented using
    /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
    /// some types more optimal implementations for single usage may be provided
    /// via this method.
    /// Results may not be identical.
    fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
        -> Self::X
        where B1: SampleBorrow<Self::X> + Sized,
              B2: SampleBorrow<Self::X> + Sized
    {
        let uniform: Self = UniformSampler::new_inclusive(low, high);
        uniform.sample(rng)
    }
}

impl<X: SampleUniform> From<Range<X>> for Uniform<X> {
    fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
        Uniform::new(r.start, r.end)
    }
}

impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> {
    fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
        Uniform::new_inclusive(r.start(), r.end())
    }
}


/// Helper trait similar to [`Borrow`] but implemented
/// only for SampleUniform and references to SampleUniform in
/// order to resolve ambiguity issues.
///
/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
    /// Immutably borrows from an owned value. See [`Borrow::borrow`]
    ///
    /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
    fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
where Borrowed: SampleUniform
{
    #[inline(always)]
    fn borrow(&self) -> &Borrowed {
        self
    }
}
impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
where Borrowed: SampleUniform
{
    #[inline(always)]
    fn borrow(&self) -> &Borrowed {
        *self
    }
}

/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::gen_range`.
pub trait SampleRange<T> {
    /// Generate a sample from the given range.
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T;

    /// Check whether the range is empty.
    fn is_empty(&self) -> bool;
}

impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
    #[inline]
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
        T::Sampler::sample_single(self.start, self.end, rng)
    }

    #[inline]
    fn is_empty(&self) -> bool {
        !(self.start < self.end)
    }
}

impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
    #[inline]
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
        T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
    }

    #[inline]
    fn is_empty(&self) -> bool {
        !(self.start() <= self.end())
    }
}


////////////////////////////////////////////////////////////////////////////////

// What follows are all back-ends.


/// The back-end implementing [`UniformSampler`] for integer types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// For simplicity, we use the same generic struct `UniformInt<X>` for all
/// integer types `X`. This gives us only one field type, `X`; to store unsigned
/// values of this size, we take use the fact that these conversions are no-ops.
///
/// For a closed range, the number of possible numbers we should generate is
/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
/// our sample space, `zone`, is a multiple of `range`; other values must be
/// rejected (by replacing with a new random sample).
///
/// As a special case, we use `range = 0` to represent the full range of the
/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
///
/// The optimum `zone` is the largest product of `range` which fits in our
/// (unsigned) target type. We calculate this by calculating how many numbers we
/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
/// product of `range` will suffice, thus in `sample_single` we multiply by a
/// power of 2 via bit-shifting (faster but may cause more rejections).
///
/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
/// use `u32` for our `zone` and samples (because it's not slower and because
/// it reduces the chance of having to reject a sample). In this case we cannot
/// store `zone` in the target type since it is too large, however we know
/// `ints_to_reject < range <= $unsigned::MAX`.
///
/// An alternative to using a modulus is widening multiply: After a widening
/// multiply by `range`, the result is in the high word. Then comparing the low
/// word against `zone` makes sure our distribution is uniform.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformInt<X> {
    low: X,
    range: X,
    z: X, // either ints_to_reject or zone depending on implementation
}

macro_rules! uniform_int_impl {
    ($ty:ty, $unsigned:ident, $u_large:ident) => {
        impl SampleUniform for $ty {
            type Sampler = UniformInt<$ty>;
        }

        impl UniformSampler for UniformInt<$ty> {
            // We play free and fast with unsigned vs signed here
            // (when $ty is signed), but that's fine, since the
            // contract of this macro is for $ty and $unsigned to be
            // "bit-equal", so casting between them is a no-op.

            type X = $ty;

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low < high, "Uniform::new called with `low >= high`");
                UniformSampler::new_inclusive(low, high - 1)
            }

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(
                    low <= high,
                    "Uniform::new_inclusive called with `low > high`"
                );
                let unsigned_max = ::core::$u_large::MAX;

                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
                let ints_to_reject = if range > 0 {
                    let range = $u_large::from(range);
                    (unsigned_max - range + 1) % range
                } else {
                    0
                };

                UniformInt {
                    low,
                    // These are really $unsigned values, but store as $ty:
                    range: range as $ty,
                    z: ints_to_reject as $unsigned as $ty,
                }
            }

            #[inline]
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                let range = self.range as $unsigned as $u_large;
                if range > 0 {
                    let unsigned_max = ::core::$u_large::MAX;
                    let zone = unsigned_max - (self.z as $unsigned as $u_large);
                    loop {
                        let v: $u_large = rng.gen();
                        let (hi, lo) = v.wmul(range);
                        if lo <= zone {
                            return self.low.wrapping_add(hi as $ty);
                        }
                    }
                } else {
                    // Sample from the entire integer range.
                    rng.gen()
                }
            }

            #[inline]
            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low < high, "UniformSampler::sample_single: low >= high");
                Self::sample_single_inclusive(low, high - 1, rng)
            }

            #[inline]
            fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high");
                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;
                // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX,
                // and any integer will do.
                if range == 0 {
                    return rng.gen();
                }

                let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
                    // Using a modulus is faster than the approximation for
                    // i8 and i16. I suppose we trade the cost of one
                    // modulus for near-perfect branch prediction.
                    let unsigned_max: $u_large = ::core::$u_large::MAX;
                    let ints_to_reject = (unsigned_max - range + 1) % range;
                    unsigned_max - ints_to_reject
                } else {
                    // conservative but fast approximation. `- 1` is necessary to allow the
                    // same comparison without bias.
                    (range << range.leading_zeros()).wrapping_sub(1)
                };

                loop {
                    let v: $u_large = rng.gen();
                    let (hi, lo) = v.wmul(range);
                    if lo <= zone {
                        return low.wrapping_add(hi as $ty);
                    }
                }
            }
        }
    };
}

uniform_int_impl! { i8, u8, u32 }
uniform_int_impl! { i16, u16, u32 }
uniform_int_impl! { i32, u32, u32 }
uniform_int_impl! { i64, u64, u64 }
#[cfg(not(target_os = "emscripten"))]
uniform_int_impl! { i128, u128, u128 }
uniform_int_impl! { isize, usize, usize }
uniform_int_impl! { u8, u8, u32 }
uniform_int_impl! { u16, u16, u32 }
uniform_int_impl! { u32, u32, u32 }
uniform_int_impl! { u64, u64, u64 }
uniform_int_impl! { usize, usize, usize }
#[cfg(not(target_os = "emscripten"))]
uniform_int_impl! { u128, u128, u128 }

#[cfg(feature = "simd_support")]
macro_rules! uniform_simd_int_impl {
    ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
        // The "pick the largest zone that can fit in an `u32`" optimization
        // is less useful here. Multiple lanes complicate things, we don't
        // know the PRNG's minimal output size, and casting to a larger vector
        // is generally a bad idea for SIMD performance. The user can still
        // implement it manually.

        // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
        //       perhaps `impl SampleUniform for $u_scalar`?
        impl SampleUniform for $ty {
            type Sampler = UniformInt<$ty>;
        }

        impl UniformSampler for UniformInt<$ty> {
            type X = $ty;

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
                where B1: SampleBorrow<Self::X> + Sized,
                      B2: SampleBorrow<Self::X> + Sized
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
                UniformSampler::new_inclusive(low, high - 1)
            }

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
                where B1: SampleBorrow<Self::X> + Sized,
                      B2: SampleBorrow<Self::X> + Sized
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low.le(high).all(),
                        "Uniform::new_inclusive called with `low > high`");
                let unsigned_max = ::core::$u_scalar::MAX;

                // NOTE: these may need to be replaced with explicitly
                // wrapping operations if `packed_simd` changes
                let range: $unsigned = ((high - low) + 1).cast();
                // `% 0` will panic at runtime.
                let not_full_range = range.gt($unsigned::splat(0));
                // replacing 0 with `unsigned_max` allows a faster `select`
                // with bitwise OR
                let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
                // wrapping addition
                let ints_to_reject = (unsigned_max - range + 1) % modulo;
                // When `range` is 0, `lo` of `v.wmul(range)` will always be
                // zero which means only one sample is needed.
                let zone = unsigned_max - ints_to_reject;

                UniformInt {
                    low,
                    // These are really $unsigned values, but store as $ty:
                    range: range.cast(),
                    z: zone.cast(),
                }
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                let range: $unsigned = self.range.cast();
                let zone: $unsigned = self.z.cast();

                // This might seem very slow, generating a whole new
                // SIMD vector for every sample rejection. For most uses
                // though, the chance of rejection is small and provides good
                // general performance. With multiple lanes, that chance is
                // multiplied. To mitigate this, we replace only the lanes of
                // the vector which fail, iteratively reducing the chance of
                // rejection. The replacement method does however add a little
                // overhead. Benchmarking or calculating probabilities might
                // reveal contexts where this replacement method is slower.
                let mut v: $unsigned = rng.gen();
                loop {
                    let (hi, lo) = v.wmul(range);
                    let mask = lo.le(zone);
                    if mask.all() {
                        let hi: $ty = hi.cast();
                        // wrapping addition
                        let result = self.low + hi;
                        // `select` here compiles to a blend operation
                        // When `range.eq(0).none()` the compare and blend
                        // operations are avoided.
                        let v: $ty = v.cast();
                        return range.gt($unsigned::splat(0)).select(result, v);
                    }
                    // Replace only the failing lanes
                    v = mask.select(v, rng.gen());
                }
            }
        }
    };

    // bulk implementation
    ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
        $(
            uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
            uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
        )+
    };
}

#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
    (u64x2, i64x2),
    (u64x4, i64x4),
    (u64x8, i64x8),
    u64
}

#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
    (u32x2, i32x2),
    (u32x4, i32x4),
    (u32x8, i32x8),
    (u32x16, i32x16),
    u32
}

#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
    (u16x2, i16x2),
    (u16x4, i16x4),
    (u16x8, i16x8),
    (u16x16, i16x16),
    (u16x32, i16x32),
    u16
}

#[cfg(feature = "simd_support")]
uniform_simd_int_impl! {
    (u8x2, i8x2),
    (u8x4, i8x4),
    (u8x8, i8x8),
    (u8x16, i8x16),
    (u8x32, i8x32),
    (u8x64, i8x64),
    u8
}

impl SampleUniform for char {
    type Sampler = UniformChar;
}

/// The back-end implementing [`UniformSampler`] for `char`.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// This differs from integer range sampling since the range `0xD800..=0xDFFF`
/// are used for surrogate pairs in UCS and UTF-16, and consequently are not
/// valid Unicode code points. We must therefore avoid sampling values in this
/// range.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformChar {
    sampler: UniformInt<u32>,
}

/// UTF-16 surrogate range start
const CHAR_SURROGATE_START: u32 = 0xD800;
/// UTF-16 surrogate range size
const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START;

/// Convert `char` to compressed `u32`
fn char_to_comp_u32(c: char) -> u32 {
    match c as u32 {
        c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN,
        c => c,
    }
}

impl UniformSampler for UniformChar {
    type X = char;

    #[inline] // if the range is constant, this helps LLVM to do the
              // calculations at compile-time.
    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = char_to_comp_u32(*low_b.borrow());
        let high = char_to_comp_u32(*high_b.borrow());
        let sampler = UniformInt::<u32>::new(low, high);
        UniformChar { sampler }
    }

    #[inline] // if the range is constant, this helps LLVM to do the
              // calculations at compile-time.
    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = char_to_comp_u32(*low_b.borrow());
        let high = char_to_comp_u32(*high_b.borrow());
        let sampler = UniformInt::<u32>::new_inclusive(low, high);
        UniformChar { sampler }
    }

    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
        let mut x = self.sampler.sample(rng);
        if x >= CHAR_SURROGATE_START {
            x += CHAR_SURROGATE_LEN;
        }
        // SAFETY: x must not be in surrogate range or greater than char::MAX.
        // This relies on range constructors which accept char arguments.
        // Validity of input char values is assumed.
        unsafe { core::char::from_u32_unchecked(x) }
    }
}

/// The back-end implementing [`UniformSampler`] for floating-point types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
/// `UniformFloat` implementation converts the output of an PRNG itself. This
/// way one or two steps can be optimized out.
///
/// The floats are first converted to a value in the `[1, 2)` interval using a
/// transmute-based method, and then mapped to the expected range with a
/// multiply and addition. Values produced this way have what equals 23 bits of
/// random digits for an `f32`, and 52 for an `f64`.
///
/// [`new`]: UniformSampler::new
/// [`new_inclusive`]: UniformSampler::new_inclusive
/// [`Standard`]: crate::distributions::Standard
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformFloat<X> {
    low: X,
    scale: X,
}

macro_rules! uniform_float_impl {
    ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
        impl SampleUniform for $ty {
            type Sampler = UniformFloat<$ty>;
        }

        impl UniformSampler for UniformFloat<$ty> {
            type X = $ty;

            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(low.all_lt(high), "Uniform::new called with `low >= high`");
                assert!(
                    low.all_finite() && high.all_finite(),
                    "Uniform::new called with non-finite boundaries"
                );
                let max_rand = <$ty>::splat(
                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
                );

                let mut scale = high - low;

                loop {
                    let mask = (scale * max_rand + low).ge_mask(high);
                    if mask.none() {
                        break;
                    }
                    scale = scale.decrease_masked(mask);
                }

                debug_assert!(<$ty>::splat(0.0).all_le(scale));

                UniformFloat { low, scale }
            }

            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(
                    low.all_le(high),
                    "Uniform::new_inclusive called with `low > high`"
                );
                assert!(
                    low.all_finite() && high.all_finite(),
                    "Uniform::new_inclusive called with non-finite boundaries"
                );
                let max_rand = <$ty>::splat(
                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
                );

                let mut scale = (high - low) / max_rand;

                loop {
                    let mask = (scale * max_rand + low).gt_mask(high);
                    if mask.none() {
                        break;
                    }
                    scale = scale.decrease_masked(mask);
                }

                debug_assert!(<$ty>::splat(0.0).all_le(scale));

                UniformFloat { low, scale }
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                // Generate a value in the range [1, 2)
                let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);

                // Get a value in the range [0, 1) in order to avoid
                // overflowing into infinity when multiplying with scale
                let value0_1 = value1_2 - 1.0;

                // We don't use `f64::mul_add`, because it is not available with
                // `no_std`. Furthermore, it is slower for some targets (but
                // faster for others). However, the order of multiplication and
                // addition is important, because on some platforms (e.g. ARM)
                // it will be optimized to a single (non-FMA) instruction.
                value0_1 * self.scale + self.low
            }

            #[inline]
            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                assert!(
                    low.all_lt(high),
                    "UniformSampler::sample_single: low >= high"
                );
                let mut scale = high - low;

                loop {
                    // Generate a value in the range [1, 2)
                    let value1_2 =
                        (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);

                    // Get a value in the range [0, 1) in order to avoid
                    // overflowing into infinity when multiplying with scale
                    let value0_1 = value1_2 - 1.0;

                    // Doing multiply before addition allows some architectures
                    // to use a single instruction.
                    let res = value0_1 * scale + low;

                    debug_assert!(low.all_le(res) || !scale.all_finite());
                    if res.all_lt(high) {
                        return res;
                    }

                    // This handles a number of edge cases.
                    // * `low` or `high` is NaN. In this case `scale` and
                    //   `res` are going to end up as NaN.
                    // * `low` is negative infinity and `high` is finite.
                    //   `scale` is going to be infinite and `res` will be
                    //   NaN.
                    // * `high` is positive infinity and `low` is finite.
                    //   `scale` is going to be infinite and `res` will
                    //   be infinite or NaN (if value0_1 is 0).
                    // * `low` is negative infinity and `high` is positive
                    //   infinity. `scale` will be infinite and `res` will
                    //   be NaN.
                    // * `low` and `high` are finite, but `high - low`
                    //   overflows to infinite. `scale` will be infinite
                    //   and `res` will be infinite or NaN (if value0_1 is 0).
                    // So if `high` or `low` are non-finite, we are guaranteed
                    // to fail the `res < high` check above and end up here.
                    //
                    // While we technically should check for non-finite `low`
                    // and `high` before entering the loop, by doing the checks
                    // here instead, we allow the common case to avoid these
                    // checks. But we are still guaranteed that if `low` or
                    // `high` are non-finite we'll end up here and can do the
                    // appropriate checks.
                    //
                    // Likewise `high - low` overflowing to infinity is also
                    // rare, so handle it here after the common case.
                    let mask = !scale.finite_mask();
                    if mask.any() {
                        assert!(
                            low.all_finite() && high.all_finite(),
                            "Uniform::sample_single: low and high must be finite"
                        );
                        scale = scale.decrease_masked(mask);
                    }
                }
            }
        }
    };
}

uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }

#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }

#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
#[cfg(feature = "simd_support")]
uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }


/// The back-end implementing [`UniformSampler`] for `Duration`.
///
/// Unless you are implementing [`UniformSampler`] for your own types, this type
/// should not be used directly, use [`Uniform`] instead.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct UniformDuration {
    mode: UniformDurationMode,
    offset: u32,
}

#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum UniformDurationMode {
    Small {
        secs: u64,
        nanos: Uniform<u32>,
    },
    Medium {
        nanos: Uniform<u64>,
    },
    Large {
        max_secs: u64,
        max_nanos: u32,
        secs: Uniform<u64>,
    },
}

impl SampleUniform for Duration {
    type Sampler = UniformDuration;
}

impl UniformSampler for UniformDuration {
    type X = Duration;

    #[inline]
    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        assert!(low < high, "Uniform::new called with `low >= high`");
        UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
    }

    #[inline]
    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        assert!(
            low <= high,
            "Uniform::new_inclusive called with `low > high`"
        );

        let low_s = low.as_secs();
        let low_n = low.subsec_nanos();
        let mut high_s = high.as_secs();
        let mut high_n = high.subsec_nanos();

        if high_n < low_n {
            high_s -= 1;
            high_n += 1_000_000_000;
        }

        let mode = if low_s == high_s {
            UniformDurationMode::Small {
                secs: low_s,
                nanos: Uniform::new_inclusive(low_n, high_n),
            }
        } else {
            let max = high_s
                .checked_mul(1_000_000_000)
                .and_then(|n| n.checked_add(u64::from(high_n)));

            if let Some(higher_bound) = max {
                let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
                UniformDurationMode::Medium {
                    nanos: Uniform::new_inclusive(lower_bound, higher_bound),
                }
            } else {
                // An offset is applied to simplify generation of nanoseconds
                let max_nanos = high_n - low_n;
                UniformDurationMode::Large {
                    max_secs: high_s,
                    max_nanos,
                    secs: Uniform::new_inclusive(low_s, high_s),
                }
            }
        };
        UniformDuration {
            mode,
            offset: low_n,
        }
    }

    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
        match self.mode {
            UniformDurationMode::Small { secs, nanos } => {
                let n = nanos.sample(rng);
                Duration::new(secs, n)
            }
            UniformDurationMode::Medium { nanos } => {
                let nanos = nanos.sample(rng);
                Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
            }
            UniformDurationMode::Large {
                max_secs,
                max_nanos,
                secs,
            } => {
                // constant folding means this is at least as fast as `Rng::sample(Range)`
                let nano_range = Uniform::new(0, 1_000_000_000);
                loop {
                    let s = secs.sample(rng);
                    let n = nano_range.sample(rng);
                    if !(s == max_secs && n > max_nanos) {
                        let sum = n + self.offset;
                        break Duration::new(s, sum);
                    }
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::rngs::mock::StepRng;

    #[test]
    #[cfg(feature = "serde1")]
    fn test_serialization_uniform_duration() {
        let distr = UniformDuration::new(std::time::Duration::from_secs(10), std::time::Duration::from_secs(60));
        let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap();
        assert_eq!(
            distr.offset, de_distr.offset
        );
        match (distr.mode, de_distr.mode) {
            (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => {
                assert_eq!(a_secs, secs);

                assert_eq!(a_nanos.0.low, nanos.0.low);
                assert_eq!(a_nanos.0.range, nanos.0.range);
                assert_eq!(a_nanos.0.z, nanos.0.z);
            }
            (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => {
                assert_eq!(a_nanos.0.low, nanos.0.low);
                assert_eq!(a_nanos.0.range, nanos.0.range);
                assert_eq!(a_nanos.0.z, nanos.0.z);
            }
            (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => {
                assert_eq!(a_max_secs, max_secs);
                assert_eq!(a_max_nanos, max_nanos);

                assert_eq!(a_secs.0.low, secs.0.low);
                assert_eq!(a_secs.0.range, secs.0.range);
                assert_eq!(a_secs.0.z, secs.0.z);
            }
            _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly")
        }
    }
    
    #[test]
    #[cfg(feature = "serde1")]
    fn test_uniform_serialization() {
        let unit_box: Uniform<i32>  = Uniform::new(-1, 1);
        let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();

        assert_eq!(unit_box.0.low, de_unit_box.0.low);
        assert_eq!(unit_box.0.range, de_unit_box.0.range);
        assert_eq!(unit_box.0.z, de_unit_box.0.z);

        let unit_box: Uniform<f32> = Uniform::new(-1., 1.);
        let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();

        assert_eq!(unit_box.0.low, de_unit_box.0.low);
        assert_eq!(unit_box.0.scale, de_unit_box.0.scale);
    }

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_equal_int() {
        Uniform::new(10, 10);
    }

    #[test]
    fn test_uniform_good_limits_equal_int() {
        let mut rng = crate::test::rng(804);
        let dist = Uniform::new_inclusive(10, 10);
        for _ in 0..20 {
            assert_eq!(rng.sample(dist), 10);
        }
    }

    #[should_panic]
    #[test]
    fn test_uniform_bad_limits_flipped_int() {
        Uniform::new(10, 5);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_integers() {
        #[cfg(not(target_os = "emscripten"))] use core::{i128, u128};
        use core::{i16, i32, i64, i8, isize};
        use core::{u16, u32, u64, u8, usize};

        let mut rng = crate::test::rng(251);
        macro_rules! t {
            ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
                for &(low, high) in $v.iter() {
                    let my_uniform = Uniform::new(low, high);
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $lt(v, high));
                    }

                    let my_uniform = Uniform::new_inclusive(low, high);
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $le(v, high));
                    }

                    let my_uniform = Uniform::new(&low, high);
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $lt(v, high));
                    }

                    let my_uniform = Uniform::new_inclusive(&low, &high);
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $le(v, high));
                    }

                    for _ in 0..1000 {
                        let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng);
                        assert!($le(low, v) && $lt(v, high));
                    }

                    for _ in 0..1000 {
                        let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng);
                        assert!($le(low, v) && $le(v, high));
                    }
                }
            }};

            // scalar bulk
            ($($ty:ident),*) => {{
                $(t!(
                    $ty,
                    [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
                    |x, y| x <= y,
                    |x, y| x < y
                );)*
            }};

            // simd bulk
            ($($ty:ident),* => $scalar:ident) => {{
                $(t!(
                    $ty,
                    [
                        ($ty::splat(0), $ty::splat(10)),
                        ($ty::splat(10), $ty::splat(127)),
                        ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
                    ],
                    |x: $ty, y| x.le(y).all(),
                    |x: $ty, y| x.lt(y).all()
                );)*
            }};
        }
        t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize);
        #[cfg(not(target_os = "emscripten"))]
        t!(i128, u128);

        #[cfg(feature = "simd_support")]
        {
            t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
            t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
            t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
            t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
            t!(u32x2, u32x4, u32x8, u32x16 => u32);
            t!(i32x2, i32x4, i32x8, i32x16 => i32);
            t!(u64x2, u64x4, u64x8 => u64);
            t!(i64x2, i64x4, i64x8 => i64);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_char() {
        let mut rng = crate::test::rng(891);
        let mut max = core::char::from_u32(0).unwrap();
        for _ in 0..100 {
            let c = rng.gen_range('A'..='Z');
            assert!('A' <= c && c <= 'Z');
            max = max.max(c);
        }
        assert_eq!(max, 'Z');
        let d = Uniform::new(
            core::char::from_u32(0xD7F0).unwrap(),
            core::char::from_u32(0xE010).unwrap(),
        );
        for _ in 0..100 {
            let c = d.sample(&mut rng);
            assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_floats() {
        let mut rng = crate::test::rng(252);
        let mut zero_rng = StepRng::new(0, 0);
        let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
        macro_rules! t {
            ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
                let v: &[($f_scalar, $f_scalar)] = &[
                    (0.0, 100.0),
                    (-1e35, -1e25),
                    (1e-35, 1e-25),
                    (-1e35, 1e35),
                    (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
                    (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
                    (-<$f_scalar>::from_bits(5), 0.0),
                    (-<$f_scalar>::from_bits(7), -0.0),
                    (10.0, ::core::$f_scalar::MAX),
                    (-100.0, ::core::$f_scalar::MAX),
                    (-::core::$f_scalar::MAX / 5.0, ::core::$f_scalar::MAX),
                    (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX / 5.0),
                    (-::core::$f_scalar::MAX * 0.8, ::core::$f_scalar::MAX * 0.7),
                    (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
                ];
                for &(low_scalar, high_scalar) in v.iter() {
                    for lane in 0..<$ty>::lanes() {
                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
                        let my_uniform = Uniform::new(low, high);
                        let my_incl_uniform = Uniform::new_inclusive(low, high);
                        for _ in 0..100 {
                            let v = rng.sample(my_uniform).extract(lane);
                            assert!(low_scalar <= v && v < high_scalar);
                            let v = rng.sample(my_incl_uniform).extract(lane);
                            assert!(low_scalar <= v && v <= high_scalar);
                            let v = <$ty as SampleUniform>::Sampler
                                ::sample_single(low, high, &mut rng).extract(lane);
                            assert!(low_scalar <= v && v < high_scalar);
                        }

                        assert_eq!(
                            rng.sample(Uniform::new_inclusive(low, low)).extract(lane),
                            low_scalar
                        );

                        assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
                        assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
                        assert_eq!(<$ty as SampleUniform>::Sampler
                            ::sample_single(low, high, &mut zero_rng)
                            .extract(lane), low_scalar);
                        assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
                        assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);

                        // Don't run this test for really tiny differences between high and low
                        // since for those rounding might result in selecting high for a very
                        // long time.
                        if (high_scalar - low_scalar) > 0.0001 {
                            let mut lowering_max_rng = StepRng::new(
                                0xffff_ffff_ffff_ffff,
                                (-1i64 << $bits_shifted) as u64,
                            );
                            assert!(
                                <$ty as SampleUniform>::Sampler
                                    ::sample_single(low, high, &mut lowering_max_rng)
                                    .extract(lane) < high_scalar
                            );
                        }
                    }
                }

                assert_eq!(
                    rng.sample(Uniform::new_inclusive(
                        ::core::$f_scalar::MAX,
                        ::core::$f_scalar::MAX
                    )),
                    ::core::$f_scalar::MAX
                );
                assert_eq!(
                    rng.sample(Uniform::new_inclusive(
                        -::core::$f_scalar::MAX,
                        -::core::$f_scalar::MAX
                    )),
                    -::core::$f_scalar::MAX
                );
            }};
        }

        t!(f32, f32, 32 - 23);
        t!(f64, f64, 64 - 52);
        #[cfg(feature = "simd_support")]
        {
            t!(f32x2, f32, 32 - 23);
            t!(f32x4, f32, 32 - 23);
            t!(f32x8, f32, 32 - 23);
            t!(f32x16, f32, 32 - 23);
            t!(f64x2, f64, 64 - 52);
            t!(f64x4, f64, 64 - 52);
            t!(f64x8, f64, 64 - 52);
        }
    }

    #[test]
    #[cfg(all(
        feature = "std",
        not(target_arch = "wasm32"),
        not(target_arch = "asmjs")
    ))]
    fn test_float_assertions() {
        use super::SampleUniform;
        use std::panic::catch_unwind;
        fn range<T: SampleUniform>(low: T, high: T) {
            let mut rng = crate::test::rng(253);
            T::Sampler::sample_single(low, high, &mut rng);
        }

        macro_rules! t {
            ($ty:ident, $f_scalar:ident) => {{
                let v: &[($f_scalar, $f_scalar)] = &[
                    (::std::$f_scalar::NAN, 0.0),
                    (1.0, ::std::$f_scalar::NAN),
                    (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
                    (1.0, 0.5),
                    (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
                    (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
                    (
                        ::std::$f_scalar::NEG_INFINITY,
                        ::std::$f_scalar::NEG_INFINITY,
                    ),
                    (::std::$f_scalar::NEG_INFINITY, 5.0),
                    (5.0, ::std::$f_scalar::INFINITY),
                    (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
                ];
                for &(low_scalar, high_scalar) in v.iter() {
                    for lane in 0..<$ty>::lanes() {
                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
                        assert!(catch_unwind(|| range(low, high)).is_err());
                        assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
                        assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
                        assert!(catch_unwind(|| range(low, low)).is_err());
                        assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
                    }
                }
            }};
        }

        t!(f32, f32);
        t!(f64, f64);
        #[cfg(feature = "simd_support")]
        {
            t!(f32x2, f32);
            t!(f32x4, f32);
            t!(f32x8, f32);
            t!(f32x16, f32);
            t!(f64x2, f64);
            t!(f64x4, f64);
            t!(f64x8, f64);
        }
    }


    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_durations() {
        #[cfg(not(feature = "std"))] use core::time::Duration;
        #[cfg(feature = "std")] use std::time::Duration;

        let mut rng = crate::test::rng(253);

        let v = &[
            (Duration::new(10, 50000), Duration::new(100, 1234)),
            (Duration::new(0, 100), Duration::new(1, 50)),
            (
                Duration::new(0, 0),
                Duration::new(u64::max_value(), 999_999_999),
            ),
        ];
        for &(low, high) in v.iter() {
            let my_uniform = Uniform::new(low, high);
            for _ in 0..1000 {
                let v = rng.sample(my_uniform);
                assert!(low <= v && v < high);
            }
        }
    }

    #[test]
    fn test_custom_uniform() {
        use crate::distributions::uniform::{
            SampleBorrow, SampleUniform, UniformFloat, UniformSampler,
        };
        #[derive(Clone, Copy, PartialEq, PartialOrd)]
        struct MyF32 {
            x: f32,
        }
        #[derive(Clone, Copy, Debug)]
        struct UniformMyF32(UniformFloat<f32>);
        impl UniformSampler for UniformMyF32 {
            type X = MyF32;

            fn new<B1, B2>(low: B1, high: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x))
            }

            fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                UniformSampler::new(low, high)
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                MyF32 {
                    x: self.0.sample(rng),
                }
            }
        }
        impl SampleUniform for MyF32 {
            type Sampler = UniformMyF32;
        }

        let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
        let uniform = Uniform::new(low, high);
        let mut rng = crate::test::rng(804);
        for _ in 0..100 {
            let x: MyF32 = rng.sample(uniform);
            assert!(low <= x && x < high);
        }
    }

    #[test]
    fn test_uniform_from_std_range() {
        let r = Uniform::from(2u32..7);
        assert_eq!(r.0.low, 2);
        assert_eq!(r.0.range, 5);
        let r = Uniform::from(2.0f64..7.0);
        assert_eq!(r.0.low, 2.0);
        assert_eq!(r.0.scale, 5.0);
    }

    #[test]
    fn test_uniform_from_std_range_inclusive() {
        let r = Uniform::from(2u32..=6);
        assert_eq!(r.0.low, 2);
        assert_eq!(r.0.range, 5);
        let r = Uniform::from(2.0f64..=7.0);
        assert_eq!(r.0.low, 2.0);
        assert!(r.0.scale > 5.0);
        assert!(r.0.scale < 5.0 + 1e-14);
    }

    #[test]
    fn value_stability() {
        fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>(
            lb: T, ub: T, expected_single: &[T], expected_multiple: &[T],
        ) where Uniform<T>: Distribution<T> {
            let mut rng = crate::test::rng(897);
            let mut buf = [lb; 3];

            for x in &mut buf {
                *x = T::Sampler::sample_single(lb, ub, &mut rng);
            }
            assert_eq!(&buf, expected_single);

            let distr = Uniform::new(lb, ub);
            for x in &mut buf {
                *x = rng.sample(&distr);
            }
            assert_eq!(&buf, expected_multiple);
        }

        // We test on a sub-set of types; possibly we should do more.
        // TODO: SIMD types

        test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]);
        test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]);

        test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[
            0.008194133,
            0.00398172,
            0.007428536,
        ]);
        test_samples(
            -1e10f64,
            1e10f64,
            &[-4673848682.871551, 6388267422.932352, 4857075081.198343],
            &[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
        );

        test_samples(
            Duration::new(2, 0),
            Duration::new(4, 0),
            &[
                Duration::new(2, 532615131),
                Duration::new(3, 638826742),
                Duration::new(3, 485707508),
            ],
            &[
                Duration::new(3, 117337521),
                Duration::new(3, 191764285),
                Duration::new(3, 236507617),
            ],
        );
    }
}