1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
// Copyright 2018 Developers of the Rand project. // Copyright 2013-2017 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! Rand provides utilities to generate random numbers, to convert them to //! useful types and distributions, and some randomness-related algorithms. //! //! # Quick Start //! //! To get you started quickly, the easiest and highest-level way to get //! a random value is to use [`random()`]; alternatively you can use //! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while //! the [`distributions`] and [`seq`] modules provide further //! functionality on top of RNGs. //! //! ``` //! use rand::prelude::*; //! //! if rand::random() { // generates a boolean //! // Try printing a random unicode code point (probably a bad idea)! //! println!("char: {}", rand::random::<char>()); //! } //! //! let mut rng = rand::thread_rng(); //! let y: f64 = rng.gen(); // generates a float between 0 and 1 //! //! let mut nums: Vec<i32> = (1..100).collect(); //! nums.shuffle(&mut rng); //! ``` //! //! # The Book //! //! For the user guide and further documentation, please read //! [The Rust Rand Book](https://rust-random.github.io/book). #![doc( html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", html_favicon_url = "https://www.rust-lang.org/favicon.ico", html_root_url = "https://rust-random.github.io/rand/" )] #![deny(missing_docs)] #![deny(missing_debug_implementations)] #![doc(test(attr(allow(unused_variables), deny(warnings))))] #![no_std] #![cfg_attr(feature = "simd_support", feature(stdsimd))] #![cfg_attr(feature = "nightly", feature(slice_partition_at_index))] #![cfg_attr(doc_cfg, feature(doc_cfg))] #![allow( clippy::float_cmp, clippy::neg_cmp_op_on_partial_ord, )] #[cfg(feature = "std")] extern crate std; #[cfg(feature = "alloc")] extern crate alloc; #[allow(unused)] macro_rules! trace { ($($x:tt)*) => ( #[cfg(feature = "log")] { log::trace!($($x)*) } ) } #[allow(unused)] macro_rules! debug { ($($x:tt)*) => ( #[cfg(feature = "log")] { log::debug!($($x)*) } ) } #[allow(unused)] macro_rules! info { ($($x:tt)*) => ( #[cfg(feature = "log")] { log::info!($($x)*) } ) } #[allow(unused)] macro_rules! warn { ($($x:tt)*) => ( #[cfg(feature = "log")] { log::warn!($($x)*) } ) } #[allow(unused)] macro_rules! error { ($($x:tt)*) => ( #[cfg(feature = "log")] { log::error!($($x)*) } ) } // Re-exports from rand_core pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; // Public modules pub mod distributions; pub mod prelude; mod rng; pub mod rngs; pub mod seq; // Public exports #[cfg(all(feature = "std", feature = "std_rng"))] pub use crate::rngs::thread::thread_rng; pub use rng::{Fill, Rng}; #[cfg(all(feature = "std", feature = "std_rng"))] use crate::distributions::{Distribution, Standard}; /// Generates a random value using the thread-local random number generator. /// /// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for /// documentation of the entropy source and [`Standard`] for documentation of /// distributions and type-specific generation. /// /// # Provided implementations /// /// The following types have provided implementations that /// generate values with the following ranges and distributions: /// /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed /// over all values of the type. /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all /// code points in the range `0...0x10_FFFF`, except for the range /// `0xD800...0xDFFF` (the surrogate code points). This includes /// unassigned/reserved code points. /// * `bool`: Generates `false` or `true`, each with probability 0.5. /// * Floating point types (`f32` and `f64`): Uniformly distributed in the /// half-open range `[0, 1)`. See notes below. /// * Wrapping integers (`Wrapping<T>`), besides the type identical to their /// normal integer variants. /// /// Also supported is the generation of the following /// compound types where all component types are supported: /// /// * Tuples (up to 12 elements): each element is generated sequentially. /// * Arrays (up to 32 elements): each element is generated sequentially; /// see also [`Rng::fill`] which supports arbitrary array length for integer /// types and tends to be faster for `u32` and smaller types. /// * `Option<T>` first generates a `bool`, and if true generates and returns /// `Some(value)` where `value: T`, otherwise returning `None`. /// /// # Examples /// /// ``` /// let x = rand::random::<u8>(); /// println!("{}", x); /// /// let y = rand::random::<f64>(); /// println!("{}", y); /// /// if rand::random() { // generates a boolean /// println!("Better lucky than good!"); /// } /// ``` /// /// If you're calling `random()` in a loop, caching the generator as in the /// following example can increase performance. /// /// ``` /// use rand::Rng; /// /// let mut v = vec![1, 2, 3]; /// /// for x in v.iter_mut() { /// *x = rand::random() /// } /// /// // can be made faster by caching thread_rng /// /// let mut rng = rand::thread_rng(); /// /// for x in v.iter_mut() { /// *x = rng.gen(); /// } /// ``` /// /// [`Standard`]: distributions::Standard #[cfg(all(feature = "std", feature = "std_rng"))] #[cfg_attr(doc_cfg, doc(cfg(all(feature = "std", feature = "std_rng"))))] #[inline] pub fn random<T>() -> T where Standard: Distribution<T> { thread_rng().gen() } #[cfg(test)] mod test { use super::*; /// Construct a deterministic RNG with the given seed pub fn rng(seed: u64) -> impl RngCore { // For tests, we want a statistically good, fast, reproducible RNG. // PCG32 will do fine, and will be easy to embed if we ever need to. const INC: u64 = 11634580027462260723; rand_pcg::Pcg32::new(seed, INC) } #[test] #[cfg(all(feature = "std", feature = "std_rng"))] fn test_random() { // not sure how to test this aside from just getting some values let _n: usize = random(); let _f: f32 = random(); let _o: Option<Option<i8>> = random(); let _many: ( (), (usize, isize, Option<(u32, (bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (f64,))), ) = random(); } }