Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Random number generators and adapters
//!
//! ## Background: Random number generators (RNGs)
//!
//! Computers cannot produce random numbers from nowhere. We classify
//! random number generators as follows:
//!
//! -   "True" random number generators (TRNGs) use hard-to-predict data sources
//!     (e.g. the high-resolution parts of event timings and sensor jitter) to
//!     harvest random bit-sequences, apply algorithms to remove bias and
//!     estimate available entropy, then combine these bits into a byte-sequence
//!     or an entropy pool. This job is usually done by the operating system or
//!     a hardware generator (HRNG).
//! -   "Pseudo"-random number generators (PRNGs) use algorithms to transform a
//!     seed into a sequence of pseudo-random numbers. These generators can be
//!     fast and produce well-distributed unpredictable random numbers (or not).
//!     They are usually deterministic: given algorithm and seed, the output
//!     sequence can be reproduced. They have finite period and eventually loop;
//!     with many algorithms this period is fixed and can be proven sufficiently
//!     long, while others are chaotic and the period depends on the seed.
//! -   "Cryptographically secure" pseudo-random number generators (CSPRNGs)
//!     are the sub-set of PRNGs which are secure. Security of the generator
//!     relies both on hiding the internal state and using a strong algorithm.
//!
//! ## Traits and functionality
//!
//! All RNGs implement the [`RngCore`] trait, as a consequence of which the
//! [`Rng`] extension trait is automatically implemented. Secure RNGs may
//! additionally implement the [`CryptoRng`] trait.
//!
//! All PRNGs require a seed to produce their random number sequence. The
//! [`SeedableRng`] trait provides three ways of constructing PRNGs:
//!
//! -   `from_seed` accepts a type specific to the PRNG
//! -   `from_rng` allows a PRNG to be seeded from any other RNG
//! -   `seed_from_u64` allows any PRNG to be seeded from a `u64` insecurely
//! -   `from_entropy` securely seeds a PRNG from fresh entropy
//!
//! Use the [`rand_core`] crate when implementing your own RNGs.
//!
//! ## Our generators
//!
//! This crate provides several random number generators:
//!
//! -   [`OsRng`] is an interface to the operating system's random number
//!     source. Typically the operating system uses a CSPRNG with entropy
//!     provided by a TRNG and some type of on-going re-seeding.
//! -   [`ThreadRng`], provided by the [`thread_rng`] function, is a handle to a
//!     thread-local CSPRNG with periodic seeding from [`OsRng`]. Because this
//!     is local, it is typically much faster than [`OsRng`]. It should be
//!     secure, though the paranoid may prefer [`OsRng`].
//! -   [`StdRng`] is a CSPRNG chosen for good performance and trust of security
//!     (based on reviews, maturity and usage). The current algorithm is ChaCha12,
//!     which is well established and rigorously analysed.
//!     [`StdRng`] provides the algorithm used by [`ThreadRng`] but without
//!     periodic reseeding.
//! -   [`SmallRng`] is an **insecure** PRNG designed to be fast, simple, require
//!     little memory, and have good output quality.
//!
//! The algorithms selected for [`StdRng`] and [`SmallRng`] may change in any
//! release and may be platform-dependent, therefore they should be considered
//! **not reproducible**.
//!
//! ## Additional generators
//!
//! **TRNGs**: The [`rdrand`] crate provides an interface to the RDRAND and
//! RDSEED instructions available in modern Intel and AMD CPUs.
//! The [`rand_jitter`] crate provides a user-space implementation of
//! entropy harvesting from CPU timer jitter, but is very slow and has
//! [security issues](https://github.com/rust-random/rand/issues/699).
//!
//! **PRNGs**: Several companion crates are available, providing individual or
//! families of PRNG algorithms. These provide the implementations behind
//! [`StdRng`] and [`SmallRng`] but can also be used directly, indeed *should*
//! be used directly when **reproducibility** matters.
//! Some suggestions are: [`rand_chacha`], [`rand_pcg`], [`rand_xoshiro`].
//! A full list can be found by searching for crates with the [`rng` tag].
//!
//! [`Rng`]: crate::Rng
//! [`RngCore`]: crate::RngCore
//! [`CryptoRng`]: crate::CryptoRng
//! [`SeedableRng`]: crate::SeedableRng
//! [`thread_rng`]: crate::thread_rng
//! [`rdrand`]: https://crates.io/crates/rdrand
//! [`rand_jitter`]: https://crates.io/crates/rand_jitter
//! [`rand_chacha`]: https://crates.io/crates/rand_chacha
//! [`rand_pcg`]: https://crates.io/crates/rand_pcg
//! [`rand_xoshiro`]: https://crates.io/crates/rand_xoshiro
//! [`rng` tag]: https://crates.io/keywords/rng

#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
#[cfg(feature = "std")] pub mod adapter;

pub mod mock; // Public so we don't export `StepRng` directly, making it a bit
              // more clear it is intended for testing.

#[cfg(all(feature = "small_rng", target_pointer_width = "64"))]
mod xoshiro256plusplus;
#[cfg(all(feature = "small_rng", not(target_pointer_width = "64")))]
mod xoshiro128plusplus;
#[cfg(feature = "small_rng")] mod small;

#[cfg(feature = "std_rng")] mod std;
#[cfg(all(feature = "std", feature = "std_rng"))] pub(crate) mod thread;

#[cfg(feature = "small_rng")] pub use self::small::SmallRng;
#[cfg(feature = "std_rng")] pub use self::std::StdRng;
#[cfg(all(feature = "std", feature = "std_rng"))] pub use self::thread::ThreadRng;

#[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
#[cfg(feature = "getrandom")] pub use rand_core::OsRng;