Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Low-level API for sampling indices

#[cfg(feature = "alloc")] use core::slice;

#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
// BTreeMap is not as fast in tests, but better than nothing.
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::collections::BTreeSet;
#[cfg(feature = "std")] use std::collections::HashSet;

#[cfg(feature = "alloc")]
use crate::distributions::{uniform::SampleUniform, Distribution, Uniform};
#[cfg(feature = "std")]
use crate::distributions::WeightedError;
use crate::Rng;

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};

/// A vector of indices.
///
/// Multiple internal representations are possible.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum IndexVec {
    #[doc(hidden)]
    U32(Vec<u32>),
    #[doc(hidden)]
    USize(Vec<usize>),
}

impl IndexVec {
    /// Returns the number of indices
    #[inline]
    pub fn len(&self) -> usize {
        match *self {
            IndexVec::U32(ref v) => v.len(),
            IndexVec::USize(ref v) => v.len(),
        }
    }

    /// Returns `true` if the length is 0.
    #[inline]
    pub fn is_empty(&self) -> bool {
        match *self {
            IndexVec::U32(ref v) => v.is_empty(),
            IndexVec::USize(ref v) => v.is_empty(),
        }
    }

    /// Return the value at the given `index`.
    ///
    /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
    /// restrictions.)
    #[inline]
    pub fn index(&self, index: usize) -> usize {
        match *self {
            IndexVec::U32(ref v) => v[index] as usize,
            IndexVec::USize(ref v) => v[index],
        }
    }

    /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
    #[inline]
    pub fn into_vec(self) -> Vec<usize> {
        match self {
            IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
            IndexVec::USize(v) => v,
        }
    }

    /// Iterate over the indices as a sequence of `usize` values
    #[inline]
    pub fn iter(&self) -> IndexVecIter<'_> {
        match *self {
            IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
            IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
        }
    }
}

impl IntoIterator for IndexVec {
    type Item = usize;
    type IntoIter = IndexVecIntoIter;

    /// Convert into an iterator over the indices as a sequence of `usize` values
    #[inline]
    fn into_iter(self) -> IndexVecIntoIter {
        match self {
            IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
            IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
        }
    }
}

impl PartialEq for IndexVec {
    fn eq(&self, other: &IndexVec) -> bool {
        use self::IndexVec::*;
        match (self, other) {
            (&U32(ref v1), &U32(ref v2)) => v1 == v2,
            (&USize(ref v1), &USize(ref v2)) => v1 == v2,
            (&U32(ref v1), &USize(ref v2)) => {
                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
            }
            (&USize(ref v1), &U32(ref v2)) => {
                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
            }
        }
    }
}

impl From<Vec<u32>> for IndexVec {
    #[inline]
    fn from(v: Vec<u32>) -> Self {
        IndexVec::U32(v)
    }
}

impl From<Vec<usize>> for IndexVec {
    #[inline]
    fn from(v: Vec<usize>) -> Self {
        IndexVec::USize(v)
    }
}

/// Return type of `IndexVec::iter`.
#[derive(Debug)]
pub enum IndexVecIter<'a> {
    #[doc(hidden)]
    U32(slice::Iter<'a, u32>),
    #[doc(hidden)]
    USize(slice::Iter<'a, usize>),
}

impl<'a> Iterator for IndexVecIter<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        use self::IndexVecIter::*;
        match *self {
            U32(ref mut iter) => iter.next().map(|i| *i as usize),
            USize(ref mut iter) => iter.next().cloned(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match *self {
            IndexVecIter::U32(ref v) => v.size_hint(),
            IndexVecIter::USize(ref v) => v.size_hint(),
        }
    }
}

impl<'a> ExactSizeIterator for IndexVecIter<'a> {}

/// Return type of `IndexVec::into_iter`.
#[derive(Clone, Debug)]
pub enum IndexVecIntoIter {
    #[doc(hidden)]
    U32(vec::IntoIter<u32>),
    #[doc(hidden)]
    USize(vec::IntoIter<usize>),
}

impl Iterator for IndexVecIntoIter {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        use self::IndexVecIntoIter::*;
        match *self {
            U32(ref mut v) => v.next().map(|i| i as usize),
            USize(ref mut v) => v.next(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        use self::IndexVecIntoIter::*;
        match *self {
            U32(ref v) => v.size_hint(),
            USize(ref v) => v.size_hint(),
        }
    }
}

impl ExactSizeIterator for IndexVecIntoIter {}


/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in random order (fully shuffled).
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// The implementation used is not specified; we automatically select the
/// fastest available algorithm for the `length` and `amount` parameters
/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
/// complexity is `O(amount)`, except that when `amount` is small, performance
/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
/// `O(length)`.
///
/// Note that performance is significantly better over `u32` indices than over
/// `u64` indices. Because of this we hide the underlying type behind an
/// abstraction, `IndexVec`.
///
/// If an allocation-free `no_std` function is required, it is suggested
/// to adapt the internal `sample_floyd` implementation.
///
/// Panics if `amount > length`.
pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
where R: Rng + ?Sized {
    if amount > length {
        panic!("`amount` of samples must be less than or equal to `length`");
    }
    if length > (::core::u32::MAX as usize) {
        // We never want to use inplace here, but could use floyd's alg
        // Lazy version: always use the cache alg.
        return sample_rejection(rng, length, amount);
    }
    let amount = amount as u32;
    let length = length as u32;

    // Choice of algorithm here depends on both length and amount. See:
    // https://github.com/rust-random/rand/pull/479
    // We do some calculations with f32. Accuracy is not very important.

    if amount < 163 {
        const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
        let j = if length < 500_000 { 0 } else { 1 };
        let amount_fp = amount as f32;
        let m4 = C[0][j] * amount_fp;
        // Short-cut: when amount < 12, floyd's is always faster
        if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
            sample_inplace(rng, length, amount)
        } else {
            sample_floyd(rng, length, amount)
        }
    } else {
        const C: [f32; 2] = [270.0, 330.0 / 9.0];
        let j = if length < 500_000 { 0 } else { 1 };
        if (length as f32) < C[j] * (amount as f32) {
            sample_inplace(rng, length, amount)
        } else {
            sample_rejection(rng, length, amount)
        }
    }
}

/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
pub fn sample_weighted<R, F, X>(
    rng: &mut R, length: usize, weight: F, amount: usize,
) -> Result<IndexVec, WeightedError>
where
    R: Rng + ?Sized,
    F: Fn(usize) -> X,
    X: Into<f64>,
{
    if length > (core::u32::MAX as usize) {
        sample_efraimidis_spirakis(rng, length, weight, amount)
    } else {
        assert!(amount <= core::u32::MAX as usize);
        let amount = amount as u32;
        let length = length as u32;
        sample_efraimidis_spirakis(rng, length, weight, amount)
    }
}


/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in an arbitrary order (there is no guarantee of shuffling or
/// ordering). The weights are to be provided by the input function `weights`,
/// which will be called once for each index.
///
/// This implementation uses the algorithm described by Efraimidis and Spirakis
/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
/// It uses `O(length + amount)` space and `O(length)` time if the
/// "nightly" feature is enabled, or `O(length)` space and `O(length
/// + amount * log length)` time otherwise.
///
/// Panics if `amount > length`.
#[cfg(feature = "std")]
fn sample_efraimidis_spirakis<R, F, X, N>(
    rng: &mut R, length: N, weight: F, amount: N,
) -> Result<IndexVec, WeightedError>
where
    R: Rng + ?Sized,
    F: Fn(usize) -> X,
    X: Into<f64>,
    N: UInt,
    IndexVec: From<Vec<N>>,
{
    if amount == N::zero() {
        return Ok(IndexVec::U32(Vec::new()));
    }

    if amount > length {
        panic!("`amount` of samples must be less than or equal to `length`");
    }

    struct Element<N> {
        index: N,
        key: f64,
    }
    impl<N> PartialOrd for Element<N> {
        fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
            self.key.partial_cmp(&other.key)
        }
    }
    impl<N> Ord for Element<N> {
        fn cmp(&self, other: &Self) -> core::cmp::Ordering {
             // partial_cmp will always produce a value,
             // because we check that the weights are not nan
            self.partial_cmp(other).unwrap()
        }
    }
    impl<N> PartialEq for Element<N> {
        fn eq(&self, other: &Self) -> bool {
            self.key == other.key
        }
    }
    impl<N> Eq for Element<N> {}

    #[cfg(feature = "nightly")]
    {
        let mut candidates = Vec::with_capacity(length.as_usize());
        let mut index = N::zero();
        while index < length {
            let weight = weight(index.as_usize()).into();
            if !(weight >= 0.) {
                return Err(WeightedError::InvalidWeight);
            }

            let key = rng.gen::<f64>().powf(1.0 / weight);
            candidates.push(Element { index, key });

            index += N::one();
        }

        // Partially sort the array to find the `amount` elements with the greatest
        // keys. Do this by using `select_nth_unstable` to put the elements with
        // the *smallest* keys at the beginning of the list in `O(n)` time, which
        // provides equivalent information about the elements with the *greatest* keys.
        let (_, mid, greater)
            = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());

        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
        result.push(mid.index);
        for element in greater {
            result.push(element.index);
        }
        Ok(IndexVec::from(result))
    }

    #[cfg(not(feature = "nightly"))]
    {
        use std::collections::BinaryHeap;

        // Partially sort the array such that the `amount` elements with the largest
        // keys are first using a binary max heap.
        let mut candidates = BinaryHeap::with_capacity(length.as_usize());
        let mut index = N::zero();
        while index < length {
            let weight = weight(index.as_usize()).into();
            if !(weight >= 0.) {
                return Err(WeightedError::InvalidWeight);
            }

            let key = rng.gen::<f64>().powf(1.0 / weight);
            candidates.push(Element { index, key });

            index += N::one();
        }

        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
        while result.len() < amount.as_usize() {
            result.push(candidates.pop().unwrap().index);
        }
        Ok(IndexVec::from(result))
    }
}

/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
/// combination algorithm.
///
/// The output values are fully shuffled. (Overhead is under 50%.)
///
/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
    // For small amount we use Floyd's fully-shuffled variant. For larger
    // amounts this is slow due to Vec::insert performance, so we shuffle
    // afterwards. Benchmarks show little overhead from extra logic.
    let floyd_shuffle = amount < 50;

    debug_assert!(amount <= length);
    let mut indices = Vec::with_capacity(amount as usize);
    for j in length - amount..length {
        let t = rng.gen_range(0..=j);
        if floyd_shuffle {
            if let Some(pos) = indices.iter().position(|&x| x == t) {
                indices.insert(pos, j);
                continue;
            }
        } else if indices.contains(&t) {
            indices.push(j);
            continue;
        }
        indices.push(t);
    }
    if !floyd_shuffle {
        // Reimplement SliceRandom::shuffle with smaller indices
        for i in (1..amount).rev() {
            // invariant: elements with index > i have been locked in place.
            indices.swap(i as usize, rng.gen_range(0..=i) as usize);
        }
    }
    IndexVec::from(indices)
}

/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
/// partial Fisher-Yates method.
/// Sample an amount of indices using an inplace partial fisher yates method.
///
/// This allocates the entire `length` of indices and randomizes only the first `amount`.
/// It then truncates to `amount` and returns.
///
/// This method is not appropriate for large `length` and potentially uses a lot
/// of memory; because of this we only implement for `u32` index (which improves
/// performance in all cases).
///
/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
    debug_assert!(amount <= length);
    let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
    indices.extend(0..length);
    for i in 0..amount {
        let j: u32 = rng.gen_range(i..length);
        indices.swap(i as usize, j as usize);
    }
    indices.truncate(amount as usize);
    debug_assert_eq!(indices.len(), amount as usize);
    IndexVec::from(indices)
}

trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
    + core::hash::Hash + core::ops::AddAssign {
    fn zero() -> Self;
    fn one() -> Self;
    fn as_usize(self) -> usize;
}
impl UInt for u32 {
    #[inline]
    fn zero() -> Self {
        0
    }

    #[inline]
    fn one() -> Self {
        1
    }

    #[inline]
    fn as_usize(self) -> usize {
        self as usize
    }
}
impl UInt for usize {
    #[inline]
    fn zero() -> Self {
        0
    }

    #[inline]
    fn one() -> Self {
        1
    }

    #[inline]
    fn as_usize(self) -> usize {
        self
    }
}

/// Randomly sample exactly `amount` indices from `0..length`, using rejection
/// sampling.
///
/// Since `amount <<< length` there is a low chance of a random sample in
/// `0..length` being a duplicate. We test for duplicates and resample where
/// necessary. The algorithm is `O(amount)` time and memory.
///
/// This function  is generic over X primarily so that results are value-stable
/// over 32-bit and 64-bit platforms.
fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
where
    R: Rng + ?Sized,
    IndexVec: From<Vec<X>>,
{
    debug_assert!(amount < length);
    #[cfg(feature = "std")]
    let mut cache = HashSet::with_capacity(amount.as_usize());
    #[cfg(not(feature = "std"))]
    let mut cache = BTreeSet::new();
    let distr = Uniform::new(X::zero(), length);
    let mut indices = Vec::with_capacity(amount.as_usize());
    for _ in 0..amount.as_usize() {
        let mut pos = distr.sample(rng);
        while !cache.insert(pos) {
            pos = distr.sample(rng);
        }
        indices.push(pos);
    }

    debug_assert_eq!(indices.len(), amount.as_usize());
    IndexVec::from(indices)
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[cfg(feature = "serde1")]
    fn test_serialization_index_vec() {
        let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
        let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
        match (some_index_vec, de_some_index_vec) {
            (IndexVec::U32(a), IndexVec::U32(b)) => {
                assert_eq!(a, b);
            },
            (IndexVec::USize(a), IndexVec::USize(b)) => {
                assert_eq!(a, b);
            },
            _ => {panic!("failed to seralize/deserialize `IndexVec`")}
        }
    }

    #[cfg(feature = "alloc")] use alloc::vec;

    #[test]
    fn test_sample_boundaries() {
        let mut r = crate::test::rng(404);

        assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
        assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
        assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);

        assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);

        assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
        assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
        assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);

        // These algorithms should be fast with big numbers. Test average.
        let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
        assert!(1 << 25 < sum && sum < (1 << 25) * 25);

        let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_sample_alg() {
        let seed_rng = crate::test::rng;

        // We can't test which algorithm is used directly, but Floyd's alg
        // should produce different results from the others. (Also, `inplace`
        // and `cached` currently use different sizes thus produce different results.)

        // A small length and relatively large amount should use inplace
        let (length, amount): (usize, usize) = (100, 50);
        let v1 = sample(&mut seed_rng(420), length, amount);
        let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);

        // Test Floyd's alg does produce different results
        let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
        assert!(v1 != v3);

        // A large length and small amount should use Floyd
        let (length, amount): (usize, usize) = (1 << 20, 50);
        let v1 = sample(&mut seed_rng(421), length, amount);
        let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);

        // A large length and larger amount should use cache
        let (length, amount): (usize, usize) = (1 << 20, 600);
        let v1 = sample(&mut seed_rng(422), length, amount);
        let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
        assert!(v1.iter().all(|e| e < length));
        assert_eq!(v1, v2);
    }

    #[cfg(feature = "std")]
    #[test]
    fn test_sample_weighted() {
        let seed_rng = crate::test::rng;
        for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
            let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
            match v {
                IndexVec::U32(mut indices) => {
                    assert_eq!(indices.len(), amount);
                    indices.sort();
                    indices.dedup();
                    assert_eq!(indices.len(), amount);
                    for &i in &indices {
                        assert!((i as usize) < len);
                    }
                },
                IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
            }
        }
    }

    #[test]
    fn value_stability_sample() {
        let do_test = |length, amount, values: &[u32]| {
            let mut buf = [0u32; 8];
            let mut rng = crate::test::rng(410);

            let res = sample(&mut rng, length, amount);
            let len = res.len().min(buf.len());
            for (x, y) in res.into_iter().zip(buf.iter_mut()) {
                *y = x as u32;
            }
            assert_eq!(
                &buf[0..len],
                values,
                "failed sampling {}, {}",
                length,
                amount
            );
        };

        do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
        do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
        do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
        do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
        do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace

        do_test(1000_000, 8, &[
            103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
        ]); // floyd
        do_test(1000_000, 180, &[
            103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
        ]); // rejection
    }
}