1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
#[cfg(feature = "std")]
use std::collections::HashMap;
#[cfg(feature = "std")]
use core::fmt;
#[cfg(feature = "std")]
use core::iter;
use core::marker::PhantomData;
use core::mem::size_of;

use byteorder::{ByteOrder, NativeEndian};
#[cfg(feature = "std")]
use byteorder::{BigEndian, LittleEndian};

use classes::ByteClasses;
use dense;
use dfa::DFA;
#[cfg(feature = "std")]
use error::{Error, Result};
#[cfg(feature = "std")]
use state_id::{StateID, dead_id, usize_to_state_id, write_state_id_bytes};
#[cfg(not(feature = "std"))]
use state_id::{StateID, dead_id};

/// A sparse table-based deterministic finite automaton (DFA).
///
/// In contrast to a [dense DFA](enum.DenseDFA.html), a sparse DFA uses a
/// more space efficient representation for its transition table. Consequently,
/// sparse DFAs can use much less memory than dense DFAs, but this comes at a
/// price. In particular, reading the more space efficient transitions takes
/// more work, and consequently, searching using a sparse DFA is typically
/// slower than a dense DFA.
///
/// A sparse DFA can be built using the default configuration via the
/// [`SparseDFA::new`](enum.SparseDFA.html#method.new) constructor. Otherwise,
/// one can configure various aspects of a dense DFA via
/// [`dense::Builder`](dense/struct.Builder.html), and then convert a dense
/// DFA to a sparse DFA using
/// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse).
///
/// In general, a sparse DFA supports all the same operations as a dense DFA.
///
/// Making the choice between a dense and sparse DFA depends on your specific
/// work load. If you can sacrifice a bit of search time performance, then a
/// sparse DFA might be the best choice. In particular, while sparse DFAs are
/// probably always slower than dense DFAs, you may find that they are easily
/// fast enough for your purposes!
///
/// # State size
///
/// A `SparseDFA` has two type parameters, `T` and `S`. `T` corresponds to
/// the type of the DFA's transition table while `S` corresponds to the
/// representation used for the DFA's state identifiers as described by the
/// [`StateID`](trait.StateID.html) trait. This type parameter is typically
/// `usize`, but other valid choices provided by this crate include `u8`,
/// `u16`, `u32` and `u64`. The primary reason for choosing a different state
/// identifier representation than the default is to reduce the amount of
/// memory used by a DFA. Note though, that if the chosen representation cannot
/// accommodate the size of your DFA, then building the DFA will fail and
/// return an error.
///
/// While the reduction in heap memory used by a DFA is one reason for choosing
/// a smaller state identifier representation, another possible reason is for
/// decreasing the serialization size of a DFA, as returned by
/// [`to_bytes_little_endian`](enum.SparseDFA.html#method.to_bytes_little_endian),
/// [`to_bytes_big_endian`](enum.SparseDFA.html#method.to_bytes_big_endian)
/// or
/// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
///
/// The type of the transition table is typically either `Vec<u8>` or `&[u8]`,
/// depending on where the transition table is stored. Note that this is
/// different than a dense DFA, whose transition table is typically
/// `Vec<S>` or `&[S]`. The reason for this is that a sparse DFA always reads
/// its transition table from raw bytes because the table is compactly packed.
///
/// # Variants
///
/// This DFA is defined as a non-exhaustive enumeration of different types of
/// dense DFAs. All of the variants use the same internal representation
/// for the transition table, but they vary in how the transition table is
/// read. A DFA's specific variant depends on the configuration options set via
/// [`dense::Builder`](dense/struct.Builder.html). The default variant is
/// `ByteClass`.
///
/// # The `DFA` trait
///
/// This type implements the [`DFA`](trait.DFA.html) trait, which means it
/// can be used for searching. For example:
///
/// ```
/// use regex_automata::{DFA, SparseDFA};
///
/// # fn example() -> Result<(), regex_automata::Error> {
/// let dfa = SparseDFA::new("foo[0-9]+")?;
/// assert_eq!(Some(8), dfa.find(b"foo12345"));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// The `DFA` trait also provides an assortment of other lower level methods
/// for DFAs, such as `start_state` and `next_state`. While these are correctly
/// implemented, it is an anti-pattern to use them in performance sensitive
/// code on the `SparseDFA` type directly. Namely, each implementation requires
/// a branch to determine which type of sparse DFA is being used. Instead,
/// this branch should be pushed up a layer in the code since walking the
/// transitions of a DFA is usually a hot path. If you do need to use these
/// lower level methods in performance critical code, then you should match on
/// the variants of this DFA and use each variant's implementation of the `DFA`
/// trait directly.
#[derive(Clone, Debug)]
pub enum SparseDFA<T: AsRef<[u8]>, S: StateID = usize> {
    /// A standard DFA that does not use byte classes.
    Standard(Standard<T, S>),
    /// A DFA that shrinks its alphabet to a set of equivalence classes instead
    /// of using all possible byte values. Any two bytes belong to the same
    /// equivalence class if and only if they can be used interchangeably
    /// anywhere in the DFA while never discriminating between a match and a
    /// non-match.
    ///
    /// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much
    /// from using byte classes. In some cases, using byte classes can even
    /// marginally increase the size of a sparse DFA's transition table. The
    /// reason for this is that a sparse DFA already compacts each state's
    /// transitions separate from whether byte classes are used.
    ByteClass(ByteClass<T, S>),
    /// Hints that destructuring should not be exhaustive.
    ///
    /// This enum may grow additional variants, so this makes sure clients
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
    /// could break existing code.)
    #[doc(hidden)]
    __Nonexhaustive,
}

#[cfg(feature = "std")]
impl SparseDFA<Vec<u8>, usize> {
    /// Parse the given regular expression using a default configuration and
    /// return the corresponding sparse DFA.
    ///
    /// The default configuration uses `usize` for state IDs and reduces the
    /// alphabet size by splitting bytes into equivalence classes. The
    /// resulting DFA is *not* minimized.
    ///
    /// If you want a non-default configuration, then use the
    /// [`dense::Builder`](dense/struct.Builder.html)
    /// to set your own configuration, and then call
    /// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse)
    /// to create a sparse DFA.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{DFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let dfa = SparseDFA::new("foo[0-9]+bar")?;
    /// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub fn new(pattern: &str) -> Result<SparseDFA<Vec<u8>, usize>> {
        dense::Builder::new()
            .build(pattern)
            .and_then(|dense| dense.to_sparse())
    }
}

#[cfg(feature = "std")]
impl<S: StateID> SparseDFA<Vec<u8>, S> {
    /// Create a new empty sparse DFA that never matches any input.
    ///
    /// # Example
    ///
    /// In order to build an empty DFA, callers must provide a type hint
    /// indicating their choice of state identifier representation.
    ///
    /// ```
    /// use regex_automata::{DFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let dfa: SparseDFA<Vec<u8>, usize> = SparseDFA::empty();
    /// assert_eq!(None, dfa.find(b""));
    /// assert_eq!(None, dfa.find(b"foo"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub fn empty() -> SparseDFA<Vec<u8>, S> {
        dense::DenseDFA::empty().to_sparse().unwrap()
    }

    pub(crate) fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
        dfa: &dense::Repr<T, S>,
    ) -> Result<SparseDFA<Vec<u8>, A>> {
        Repr::from_dense_sized(dfa).map(|r| r.into_sparse_dfa())
    }
}

impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
    /// Cheaply return a borrowed version of this sparse DFA. Specifically, the
    /// DFA returned always uses `&[u8]` for its transition table while keeping
    /// the same state identifier representation.
    pub fn as_ref<'a>(&'a self) -> SparseDFA<&'a [u8], S> {
        match *self {
            SparseDFA::Standard(Standard(ref r)) => {
                SparseDFA::Standard(Standard(r.as_ref()))
            }
            SparseDFA::ByteClass(ByteClass(ref r)) => {
                SparseDFA::ByteClass(ByteClass(r.as_ref()))
            }
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    /// Return an owned version of this sparse DFA. Specifically, the DFA
    /// returned always uses `Vec<u8>` for its transition table while keeping
    /// the same state identifier representation.
    ///
    /// Effectively, this returns a sparse DFA whose transition table lives
    /// on the heap.
    #[cfg(feature = "std")]
    pub fn to_owned(&self) -> SparseDFA<Vec<u8>, S> {
        match *self {
            SparseDFA::Standard(Standard(ref r)) => {
                SparseDFA::Standard(Standard(r.to_owned()))
            }
            SparseDFA::ByteClass(ByteClass(ref r)) => {
                SparseDFA::ByteClass(ByteClass(r.to_owned()))
            }
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    /// Returns the memory usage, in bytes, of this DFA.
    ///
    /// The memory usage is computed based on the number of bytes used to
    /// represent this DFA's transition table. This typically corresponds to
    /// heap memory usage.
    ///
    /// This does **not** include the stack size used up by this DFA. To
    /// compute that, used `std::mem::size_of::<SparseDFA>()`.
    pub fn memory_usage(&self) -> usize {
        self.repr().memory_usage()
    }

    fn repr(&self) -> &Repr<T, S> {
        match *self {
            SparseDFA::Standard(ref r) => &r.0,
            SparseDFA::ByteClass(ref r) => &r.0,
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }
}

/// Routines for converting a sparse DFA to other representations, such as
/// smaller state identifiers or raw bytes suitable for persistent storage.
#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> {
    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u8` for the representation of state
    /// identifiers. If `u8` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u8>()`.
    pub fn to_u8(&self) -> Result<SparseDFA<Vec<u8>, u8>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u16` for the representation of state
    /// identifiers. If `u16` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u16>()`.
    pub fn to_u16(&self) -> Result<SparseDFA<Vec<u8>, u16>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u32` for the representation of state
    /// identifiers. If `u32` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u32>()`.
    #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
    pub fn to_u32(&self) -> Result<SparseDFA<Vec<u8>, u32>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `u64` for the representation of state
    /// identifiers. If `u64` is insufficient to represent all state
    /// identifiers in this DFA, then this returns an error.
    ///
    /// This is a convenience routine for `to_sized::<u64>()`.
    #[cfg(target_pointer_width = "64")]
    pub fn to_u64(&self) -> Result<SparseDFA<Vec<u8>, u64>> {
        self.to_sized()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to
    /// this DFA, but attempt to use `A` for the representation of state
    /// identifiers. If `A` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    ///
    /// An alternative way to construct such a DFA is to use
    /// [`DenseDFA::to_sparse_sized`](enum.DenseDFA.html#method.to_sparse_sized).
    /// In general, picking the appropriate size upon initial construction of
    /// a sparse DFA is preferred, since it will do the conversion in one
    /// step instead of two.
    pub fn to_sized<A: StateID>(&self) -> Result<SparseDFA<Vec<u8>, A>> {
        self.repr().to_sized().map(|r| r.into_sparse_dfa())
    }

    /// Serialize a sparse DFA to raw bytes in little endian format.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<LittleEndian>()
    }

    /// Serialize a sparse DFA to raw bytes in big endian format.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<BigEndian>()
    }

    /// Serialize a sparse DFA to raw bytes in native endian format.
    /// Generally, it is better to pick an explicit endianness using either
    /// `to_bytes_little_endian` or `to_bytes_big_endian`. This routine is
    /// useful in tests where the DFA is serialized and deserialized on the
    /// same platform.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
        self.repr().to_bytes::<NativeEndian>()
    }
}

impl<'a, S: StateID> SparseDFA<&'a [u8], S> {
    /// Deserialize a sparse DFA with a specific state identifier
    /// representation.
    ///
    /// Deserializing a DFA using this routine will never allocate heap memory.
    /// This is also guaranteed to be a constant time operation that does not
    /// vary with the size of the DFA.
    ///
    /// The bytes given should be generated by the serialization of a DFA with
    /// either the
    /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
    /// method or the
    /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
    /// endian, depending on the endianness of the machine you are
    /// deserializing this DFA from.
    ///
    /// If the state identifier representation is `usize`, then deserialization
    /// is dependent on the pointer size. For this reason, it is best to
    /// serialize DFAs using a fixed size representation for your state
    /// identifiers, such as `u8`, `u16`, `u32` or `u64`.
    ///
    /// # Panics
    ///
    /// The bytes given should be *trusted*. In particular, if the bytes
    /// are not a valid serialization of a DFA, or if the endianness of the
    /// serialized bytes is different than the endianness of the machine that
    /// is deserializing the DFA, then this routine will panic. Moreover, it
    /// is possible for this deserialization routine to succeed even if the
    /// given bytes do not represent a valid serialized sparse DFA.
    ///
    /// # Safety
    ///
    /// This routine is unsafe because it permits callers to provide an
    /// arbitrary transition table with possibly incorrect transitions. While
    /// the various serialization routines will never return an incorrect
    /// transition table, there is no guarantee that the bytes provided here
    /// are correct. While deserialization does many checks (as documented
    /// above in the panic conditions), this routine does not check that the
    /// transition table is correct. Given an incorrect transition table, it is
    /// possible for the search routines to access out-of-bounds memory because
    /// of explicit bounds check elision.
    ///
    /// # Example
    ///
    /// This example shows how to serialize a DFA to raw bytes, deserialize it
    /// and then use it for searching. Note that we first convert the DFA to
    /// using `u16` for its state identifier representation before serializing
    /// it. While this isn't strictly necessary, it's good practice in order to
    /// decrease the size of the DFA and to avoid platform specific pitfalls
    /// such as differing pointer sizes.
    ///
    /// ```
    /// use regex_automata::{DFA, DenseDFA, SparseDFA};
    ///
    /// # fn example() -> Result<(), regex_automata::Error> {
    /// let sparse = SparseDFA::new("foo[0-9]+")?;
    /// let bytes = sparse.to_u16()?.to_bytes_native_endian()?;
    ///
    /// let dfa: SparseDFA<&[u8], u16> = unsafe {
    ///     SparseDFA::from_bytes(&bytes)
    /// };
    ///
    /// assert_eq!(Some(8), dfa.find(b"foo12345"));
    /// # Ok(()) }; example().unwrap()
    /// ```
    pub unsafe fn from_bytes(buf: &'a [u8]) -> SparseDFA<&'a [u8], S> {
        Repr::from_bytes(buf).into_sparse_dfa()
    }
}

impl<T: AsRef<[u8]>, S: StateID> DFA for SparseDFA<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.repr().start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.repr().is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.repr().is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.repr().is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.repr().is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        match *self {
            SparseDFA::Standard(ref r) => r.next_state(current, input),
            SparseDFA::ByteClass(ref r) => r.next_state(current, input),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }

    // We specialize the following methods because it lets us lift the
    // case analysis between the different types of sparse DFAs. Instead of
    // doing the case analysis for every transition, we do it once before
    // searching. For sparse DFAs, this doesn't seem to benefit performance as
    // much as it does for the dense DFAs, but it's easy to do so we might as
    // well do it.

    #[inline]
    fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
        match *self {
            SparseDFA::Standard(ref r) => r.is_match_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.find_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.find_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }

    #[inline]
    fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
        match *self {
            SparseDFA::Standard(ref r) => r.rfind_at(bytes, start),
            SparseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
            SparseDFA::__Nonexhaustive => unreachable!(),
        }
    }
}

/// A standard sparse DFA that does not use premultiplication or byte classes.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct Standard<T: AsRef<[u8]>, S: StateID = usize>(
    Repr<T, S>,
);

impl<T: AsRef<[u8]>, S: StateID> DFA for Standard<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.0.start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.0.is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.0.is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.0.is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.0.is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        self.0.state(current).next(input)
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }
}

/// A sparse DFA that shrinks its alphabet.
///
/// Alphabet shrinking is achieved by using a set of equivalence classes
/// instead of using all possible byte values. Any two bytes belong to the same
/// equivalence class if and only if they can be used interchangeably anywhere
/// in the DFA while never discriminating between a match and a non-match.
///
/// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much from
/// using byte classes. In some cases, using byte classes can even marginally
/// increase the size of a sparse DFA's transition table. The reason for this
/// is that a sparse DFA already compacts each state's transitions separate
/// from whether byte classes are used.
///
/// Generally, it isn't necessary to use this type directly, since a
/// `SparseDFA` can be used for searching directly. One possible reason why
/// one might want to use this type directly is if you are implementing your
/// own search routines by walking a DFA's transitions directly. In that case,
/// you'll want to use this type (or any of the other DFA variant types)
/// directly, since they implement `next_state` more efficiently.
#[derive(Clone, Debug)]
pub struct ByteClass<T: AsRef<[u8]>, S: StateID = usize>(
    Repr<T, S>,
);

impl<T: AsRef<[u8]>, S: StateID> DFA for ByteClass<T, S> {
    type ID = S;

    #[inline]
    fn start_state(&self) -> S {
        self.0.start_state()
    }

    #[inline]
    fn is_match_state(&self, id: S) -> bool {
        self.0.is_match_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: S) -> bool {
        self.0.is_dead_state(id)
    }

    #[inline]
    fn is_match_or_dead_state(&self, id: S) -> bool {
        self.0.is_match_or_dead_state(id)
    }

    #[inline]
    fn is_anchored(&self) -> bool {
        self.0.is_anchored()
    }

    #[inline]
    fn next_state(&self, current: S, input: u8) -> S {
        let input = self.0.byte_classes.get(input);
        self.0.state(current).next(input)
    }

    #[inline]
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
        self.next_state(current, input)
    }
}

/// The underlying representation of a sparse DFA. This is shared by all of
/// the different variants of a sparse DFA.
#[derive(Clone)]
#[cfg_attr(not(feature = "std"), derive(Debug))]
struct Repr<T: AsRef<[u8]>, S: StateID = usize> {
    anchored: bool,
    start: S,
    state_count: usize,
    max_match: S,
    byte_classes: ByteClasses,
    trans: T,
}

impl<T: AsRef<[u8]>, S: StateID> Repr<T, S> {
    fn into_sparse_dfa(self) -> SparseDFA<T, S> {
        if self.byte_classes.is_singleton() {
            SparseDFA::Standard(Standard(self))
        } else {
            SparseDFA::ByteClass(ByteClass(self))
        }
    }

    fn as_ref<'a>(&'a self) -> Repr<&'a [u8], S> {
        Repr {
            anchored: self.anchored,
            start: self.start,
            state_count: self.state_count,
            max_match: self.max_match,
            byte_classes: self.byte_classes.clone(),
            trans: self.trans(),
        }
    }

    #[cfg(feature = "std")]
    fn to_owned(&self) -> Repr<Vec<u8>, S> {
        Repr {
            anchored: self.anchored,
            start: self.start,
            state_count: self.state_count,
            max_match: self.max_match,
            byte_classes: self.byte_classes.clone(),
            trans: self.trans().to_vec(),
        }
    }

    /// Return a convenient representation of the given state.
    ///
    /// This is marked as inline because it doesn't seem to get inlined
    /// otherwise, which leads to a fairly significant performance loss (~25%).
    #[inline]
    fn state<'a>(&'a self, id: S) -> State<'a, S> {
        let mut pos = id.to_usize();
        let ntrans = NativeEndian::read_u16(&self.trans()[pos..]) as usize;
        pos += 2;
        let input_ranges = &self.trans()[pos..pos + (ntrans * 2)];
        pos += 2 * ntrans;
        let next = &self.trans()[pos..pos + (ntrans * size_of::<S>())];
        State { _state_id_repr: PhantomData, ntrans, input_ranges, next }
    }

    /// Return an iterator over all of the states in this DFA.
    ///
    /// The iterator returned yields tuples, where the first element is the
    /// state ID and the second element is the state itself.
    #[cfg(feature = "std")]
    fn states<'a>(&'a self) -> StateIter<'a, T, S> {
        StateIter { dfa: self, id: dead_id() }
    }

    fn memory_usage(&self) -> usize {
        self.trans().len()
    }

    fn start_state(&self) -> S {
        self.start
    }

    fn is_match_state(&self, id: S) -> bool {
        self.is_match_or_dead_state(id) && !self.is_dead_state(id)
    }

    fn is_dead_state(&self, id: S) -> bool {
        id == dead_id()
    }

    fn is_match_or_dead_state(&self, id: S) -> bool {
        id <= self.max_match
    }

    fn is_anchored(&self) -> bool {
        self.anchored
    }

    fn trans(&self) -> &[u8] {
        self.trans.as_ref()
    }

    /// Create a new sparse DFA whose match semantics are equivalent to this
    /// DFA, but attempt to use `A` for the representation of state
    /// identifiers. If `A` is insufficient to represent all state identifiers
    /// in this DFA, then this returns an error.
    #[cfg(feature = "std")]
    fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<u8>, A>> {
        // To build the new DFA, we proceed much like the initial construction
        // of the sparse DFA. Namely, since the state ID size is changing,
        // we don't actually know all of our state IDs until we've allocated
        // all necessary space. So we do one pass that allocates all of the
        // storage we need, and then another pass to fill in the transitions.

        let mut trans = Vec::with_capacity(size_of::<A>() * self.state_count);
        let mut map: HashMap<S, A> = HashMap::with_capacity(self.state_count);
        for (old_id, state) in self.states() {
            let pos = trans.len();
            map.insert(old_id, usize_to_state_id(pos)?);

            let n = state.ntrans;
            let zeros = 2 + (n * 2) + (n * size_of::<A>());
            trans.extend(iter::repeat(0).take(zeros));

            NativeEndian::write_u16(&mut trans[pos..], n as u16);
            let (s, e) = (pos + 2, pos + 2 + (n * 2));
            trans[s..e].copy_from_slice(state.input_ranges);
        }

        let mut new = Repr {
            anchored: self.anchored,
            start: map[&self.start],
            state_count: self.state_count,
            max_match: map[&self.max_match],
            byte_classes: self.byte_classes.clone(),
            trans: trans,
        };
        for (&old_id, &new_id) in map.iter() {
            let old_state = self.state(old_id);
            let mut new_state = new.state_mut(new_id);
            for i in 0..new_state.ntrans {
                let next = map[&old_state.next_at(i)];
                new_state.set_next_at(i, usize_to_state_id(next.to_usize())?);
            }
        }
        new.start = map[&self.start];
        new.max_match = map[&self.max_match];
        Ok(new)
    }

    /// Serialize a sparse DFA to raw bytes using the provided endianness.
    ///
    /// If the state identifier representation of this DFA has a size different
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
    /// implementations of `StateID` provided by this crate satisfy this
    /// requirement.
    ///
    /// Unlike dense DFAs, the result is not necessarily aligned since a
    /// sparse DFA's transition table is always read as a sequence of bytes.
    #[cfg(feature = "std")]
    fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
        let label = b"rust-regex-automata-sparse-dfa\x00";
        let size =
            // For human readable label.
            label.len()
            // endiannes check, must be equal to 0xFEFF for native endian
            + 2
            // For version number.
            + 2
            // Size of state ID representation, in bytes.
            // Must be 1, 2, 4 or 8.
            + 2
            // For DFA misc options. (Currently unused.)
            + 2
            // For start state.
            + 8
            // For state count.
            + 8
            // For max match state.
            + 8
            // For byte class map.
            + 256
            // For transition table.
            + self.trans().len();

        let mut i = 0;
        let mut buf = vec![0; size];

        // write label
        for &b in label {
            buf[i] = b;
            i += 1;
        }
        // endianness check
        A::write_u16(&mut buf[i..], 0xFEFF);
        i += 2;
        // version number
        A::write_u16(&mut buf[i..], 1);
        i += 2;
        // size of state ID
        let state_size = size_of::<S>();
        if ![1, 2, 4, 8].contains(&state_size) {
            return Err(Error::serialize(&format!(
                "state size of {} not supported, must be 1, 2, 4 or 8",
                state_size
            )));
        }
        A::write_u16(&mut buf[i..], state_size as u16);
        i += 2;
        // DFA misc options
        let mut options = 0u16;
        if self.anchored {
            options |= dense::MASK_ANCHORED;
        }
        A::write_u16(&mut buf[i..], options);
        i += 2;
        // start state
        A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
        i += 8;
        // state count
        A::write_u64(&mut buf[i..], self.state_count as u64);
        i += 8;
        // max match state
        A::write_u64(
            &mut buf[i..],
            self.max_match.to_usize() as u64,
        );
        i += 8;
        // byte class map
        for b in (0..256).map(|b| b as u8) {
            buf[i] = self.byte_classes.get(b);
            i += 1;
        }
        // transition table
        for (_, state) in self.states() {
            A::write_u16(&mut buf[i..], state.ntrans as u16);
            i += 2;
            buf[i..i + (state.ntrans * 2)].copy_from_slice(state.input_ranges);
            i += state.ntrans * 2;
            for j in 0..state.ntrans {
                write_state_id_bytes::<A, _>(&mut buf[i..], state.next_at(j));
                i += size_of::<S>();
            }
        }

        assert_eq!(size, i, "expected to consume entire buffer");

        Ok(buf)
    }
}

impl<'a, S: StateID> Repr<&'a [u8], S> {
    /// The implementation for deserializing a sparse DFA from raw bytes.
    unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [u8], S> {
        // skip over label
        match buf.iter().position(|&b| b == b'\x00') {
            None => panic!("could not find label"),
            Some(i) => buf = &buf[i+1..],
        }

        // check that current endianness is same as endianness of DFA
        let endian_check = NativeEndian::read_u16(buf);
        buf = &buf[2..];
        if endian_check != 0xFEFF {
            panic!(
                "endianness mismatch, expected 0xFEFF but got 0x{:X}. \
                 are you trying to load a SparseDFA serialized with a \
                 different endianness?",
                endian_check,
            );
        }

        // check that the version number is supported
        let version = NativeEndian::read_u16(buf);
        buf = &buf[2..];
        if version != 1 {
            panic!(
                "expected version 1, but found unsupported version {}",
                version,
            );
        }

        // read size of state
        let state_size = NativeEndian::read_u16(buf) as usize;
        if state_size != size_of::<S>() {
            panic!(
                "state size of SparseDFA ({}) does not match \
                 requested state size ({})",
                state_size, size_of::<S>(),
            );
        }
        buf = &buf[2..];

        // read miscellaneous options
        let opts = NativeEndian::read_u16(buf);
        buf = &buf[2..];

        // read start state
        let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
        buf = &buf[8..];

        // read state count
        let state_count = NativeEndian::read_u64(buf) as usize;
        buf = &buf[8..];

        // read max match state
        let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
        buf = &buf[8..];

        // read byte classes
        let byte_classes = ByteClasses::from_slice(&buf[..256]);
        buf = &buf[256..];

        Repr {
            anchored: opts & dense::MASK_ANCHORED > 0,
            start,
            state_count,
            max_match,
            byte_classes,
            trans: buf,
        }
    }
}

#[cfg(feature = "std")]
impl<S: StateID> Repr<Vec<u8>, S> {
    /// The implementation for constructing a sparse DFA from a dense DFA.
    fn from_dense_sized<T: AsRef<[S]>, A: StateID>(
        dfa: &dense::Repr<T, S>,
    ) -> Result<Repr<Vec<u8>, A>> {
        // In order to build the transition table, we need to be able to write
        // state identifiers for each of the "next" transitions in each state.
        // Our state identifiers correspond to the byte offset in the
        // transition table at which the state is encoded. Therefore, we do not
        // actually know what the state identifiers are until we've allocated
        // exactly as much space as we need for each state. Thus, construction
        // of the transition table happens in two passes.
        //
        // In the first pass, we fill out the shell of each state, which
        // includes the transition count, the input byte ranges and zero-filled
        // space for the transitions. In this first pass, we also build up a
        // map from the state identifier index of the dense DFA to the state
        // identifier in this sparse DFA.
        //
        // In the second pass, we fill in the transitions based on the map
        // built in the first pass.

        let mut trans = Vec::with_capacity(size_of::<A>() * dfa.state_count());
        let mut remap: Vec<A> = vec![dead_id(); dfa.state_count()];
        for (old_id, state) in dfa.states() {
            let pos = trans.len();

            remap[dfa.state_id_to_index(old_id)] = usize_to_state_id(pos)?;
            // zero-filled space for the transition count
            trans.push(0);
            trans.push(0);

            let mut trans_count = 0;
            for (b1, b2, _) in state.sparse_transitions() {
                trans_count += 1;
                trans.push(b1);
                trans.push(b2);
            }
            // fill in the transition count
            NativeEndian::write_u16(&mut trans[pos..], trans_count);

            // zero-fill the actual transitions
            let zeros = trans_count as usize * size_of::<A>();
            trans.extend(iter::repeat(0).take(zeros));
        }

        let mut new = Repr {
            anchored: dfa.is_anchored(),
            start: remap[dfa.state_id_to_index(dfa.start_state())],
            state_count: dfa.state_count(),
            max_match: remap[dfa.state_id_to_index(dfa.max_match_state())],
            byte_classes: dfa.byte_classes().clone(),
            trans: trans,
        };
        for (old_id, old_state) in dfa.states() {
            let new_id = remap[dfa.state_id_to_index(old_id)];
            let mut new_state = new.state_mut(new_id);
            let sparse = old_state.sparse_transitions();
            for (i, (_, _, next)) in sparse.enumerate() {
                let next = remap[dfa.state_id_to_index(next)];
                new_state.set_next_at(i, next);
            }
        }
        Ok(new)
    }

    /// Return a convenient mutable representation of the given state.
    fn state_mut<'a>(&'a mut self, id: S) -> StateMut<'a, S> {
        let mut pos = id.to_usize();
        let ntrans = NativeEndian::read_u16(&self.trans[pos..]) as usize;
        pos += 2;

        let size = (ntrans * 2) + (ntrans * size_of::<S>());
        let ranges_and_next = &mut self.trans[pos..pos + size];
        let (input_ranges, next) = ranges_and_next.split_at_mut(ntrans * 2);
        StateMut { _state_id_repr: PhantomData, ntrans, input_ranges, next }
    }
}

#[cfg(feature = "std")]
impl<T: AsRef<[u8]>, S: StateID> fmt::Debug for Repr<T, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fn state_status<T: AsRef<[u8]>, S: StateID>(
            dfa: &Repr<T, S>,
            id: S,
        ) -> &'static str {
            if id == dead_id() {
                if dfa.is_match_state(id) {
                    "D*"
                } else {
                    "D "
                }
            } else if id == dfa.start_state() {
                if dfa.is_match_state(id) {
                    ">*"
                } else {
                    "> "
                }
            } else {
                if dfa.is_match_state(id) {
                    " *"
                } else {
                    "  "
                }
            }
        }

        writeln!(f, "SparseDFA(")?;
        for (id, state) in self.states() {
            let status = state_status(self, id);
            writeln!(f, "{}{:04}: {:?}", status, id.to_usize(), state)?;
        }
        writeln!(f, ")")?;
        Ok(())
    }
}

/// An iterator over all states in a sparse DFA.
///
/// This iterator yields tuples, where the first element is the state ID and
/// the second element is the state itself.
#[cfg(feature = "std")]
#[derive(Debug)]
struct StateIter<'a, T: AsRef<[u8]> + 'a, S: StateID + 'a = usize> {
    dfa: &'a Repr<T, S>,
    id: S,
}

#[cfg(feature = "std")]
impl<'a, T: AsRef<[u8]>, S: StateID> Iterator for StateIter<'a, T, S> {
    type Item = (S, State<'a, S>);

    fn next(&mut self) -> Option<(S, State<'a, S>)> {
        if self.id.to_usize() >= self.dfa.trans().len() {
            return None;
        }
        let id = self.id;
        let state = self.dfa.state(id);
        self.id = S::from_usize(self.id.to_usize() + state.bytes());
        Some((id, state))
    }
}

/// A representation of a sparse DFA state that can be cheaply materialized
/// from a state identifier.
#[derive(Clone)]
struct State<'a, S: StateID = usize> {
    /// The state identifier representation used by the DFA from which this
    /// state was extracted. Since our transition table is compacted in a
    /// &[u8], we don't actually use the state ID type parameter explicitly
    /// anywhere, so we fake it. This prevents callers from using an incorrect
    /// state ID representation to read from this state.
    _state_id_repr: PhantomData<S>,
    /// The number of transitions in this state.
    ntrans: usize,
    /// Pairs of input ranges, where there is one pair for each transition.
    /// Each pair specifies an inclusive start and end byte range for the
    /// corresponding transition.
    input_ranges: &'a [u8],
    /// Transitions to the next state. This slice contains native endian
    /// encoded state identifiers, with `S` as the representation. Thus, there
    /// are `ntrans * size_of::<S>()` bytes in this slice.
    next: &'a [u8],
}

impl<'a, S: StateID> State<'a, S> {
    /// Searches for the next transition given an input byte. If no such
    /// transition could be found, then a dead state is returned.
    fn next(&self, input: u8) -> S {
        // This straight linear search was observed to be much better than
        // binary search on ASCII haystacks, likely because a binary search
        // visits the ASCII case last but a linear search sees it first. A
        // binary search does do a little better on non-ASCII haystacks, but
        // not by much. There might be a better trade off lurking here.
        for i in 0..self.ntrans {
            let (start, end) = self.range(i);
            if start <= input && input <= end {
                return self.next_at(i)
            }
            // We could bail early with an extra branch: if input < b1, then
            // we know we'll never find a matching transition. Interestingly,
            // this extra branch seems to not help performance, or will even
            // hurt it. It's likely very dependent on the DFA itself and what
            // is being searched.
        }
        dead_id()
    }

    /// Returns the inclusive input byte range for the ith transition in this
    /// state.
    fn range(&self, i: usize) -> (u8, u8) {
        (self.input_ranges[i * 2], self.input_ranges[i * 2 + 1])
    }

    /// Returns the next state for the ith transition in this state.
    fn next_at(&self, i: usize) -> S {
        S::read_bytes(&self.next[i * size_of::<S>()..])
    }

    /// Return the total number of bytes that this state consumes in its
    /// encoded form.
    #[cfg(feature = "std")]
    fn bytes(&self) -> usize {
        2 + (self.ntrans * 2) + (self.ntrans * size_of::<S>())
    }
}

#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for State<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut transitions = vec![];
        for i in 0..self.ntrans {
            let next = self.next_at(i);
            if next == dead_id() {
                continue;
            }

            let (start, end) = self.range(i);
            if start == end {
                transitions.push(
                    format!("{} => {}", escape(start), next.to_usize()),
                );
            } else {
                transitions.push(
                    format!(
                        "{}-{} => {}",
                        escape(start),
                        escape(end),
                        next.to_usize(),
                    ),
                );
            }
        }
        write!(f, "{}", transitions.join(", "))
    }
}

/// A representation of a mutable sparse DFA state that can be cheaply
/// materialized from a state identifier.
#[cfg(feature = "std")]
struct StateMut<'a, S: StateID = usize> {
    /// The state identifier representation used by the DFA from which this
    /// state was extracted. Since our transition table is compacted in a
    /// &[u8], we don't actually use the state ID type parameter explicitly
    /// anywhere, so we fake it. This prevents callers from using an incorrect
    /// state ID representation to read from this state.
    _state_id_repr: PhantomData<S>,
    /// The number of transitions in this state.
    ntrans: usize,
    /// Pairs of input ranges, where there is one pair for each transition.
    /// Each pair specifies an inclusive start and end byte range for the
    /// corresponding transition.
    input_ranges: &'a mut [u8],
    /// Transitions to the next state. This slice contains native endian
    /// encoded state identifiers, with `S` as the representation. Thus, there
    /// are `ntrans * size_of::<S>()` bytes in this slice.
    next: &'a mut [u8],
}

#[cfg(feature = "std")]
impl<'a, S: StateID> StateMut<'a, S> {
    /// Sets the ith transition to the given state.
    fn set_next_at(&mut self, i: usize, next: S) {
        next.write_bytes(&mut self.next[i * size_of::<S>()..]);
    }
}

#[cfg(feature = "std")]
impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let state = State {
            _state_id_repr: self._state_id_repr,
            ntrans: self.ntrans,
            input_ranges: self.input_ranges,
            next: self.next,
        };
        fmt::Debug::fmt(&state, f)
    }
}

/// Return the given byte as its escaped string form.
#[cfg(feature = "std")]
fn escape(b: u8) -> String {
    use std::ascii;

    String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
}

/// A binary search routine specialized specifically to a sparse DFA state's
/// transitions. Specifically, the transitions are defined as a set of pairs
/// of input bytes that delineate an inclusive range of bytes. If the input
/// byte is in the range, then the corresponding transition is a match.
///
/// This binary search accepts a slice of these pairs and returns the position
/// of the matching pair (the ith transition), or None if no matching pair
/// could be found.
///
/// Note that this routine is not currently used since it was observed to
/// either decrease performance when searching ASCII, or did not provide enough
/// of a boost on non-ASCII haystacks to be worth it. However, we leave it here
/// for posterity in case we can find a way to use it.
///
/// In theory, we could use the standard library's search routine if we could
/// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this currently
/// guaranteed to be safe and is thus UB (since I don't think the in-memory
/// representation of `(u8, u8)` has been nailed down).
#[inline(always)]
#[allow(dead_code)]
fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> {
    debug_assert!(ranges.len() % 2 == 0, "ranges must have even length");
    debug_assert!(ranges.len() <= 512, "ranges should be short");

    let (mut left, mut right) = (0, ranges.len() / 2);
    while left < right {
        let mid = (left + right) / 2;
        let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]);
        if needle < b1 {
            right = mid;
        } else if needle > b2 {
            left = mid + 1;
        } else {
            return Some(mid);
        }
    }
    None
}