Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*!
Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes.

This is sub-module is useful for constructing byte based automatons that need
to embed UTF-8 decoding. The most common use of this module is in conjunction
with the [`hir::ClassUnicodeRange`](../hir/struct.ClassUnicodeRange.html) type.

See the documentation on the `Utf8Sequences` iterator for more details and
an example.

# Wait, what is this?

This is simplest to explain with an example. Let's say you wanted to test
whether a particular byte sequence was a Cyrillic character. One possible
scalar value range is `[0400-04FF]`. The set of allowed bytes for this
range can be expressed as a sequence of byte ranges:

```ignore
[D0-D3][80-BF]
```

This is simple enough: simply encode the boundaries, `0400` encodes to
`D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each
corresponding pair of bytes: `D0` to `D3` and `80` to `BF`.

However, what if you wanted to add the Cyrillic Supplementary characters to
your range? Your range might then become `[0400-052F]`. The same procedure
as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges
you'd get from the previous transformation would be `[D0-D4][80-AF]`. However,
this isn't quite correct because this range doesn't capture many characters,
for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`).

Instead, you need multiple sequences of byte ranges:

```ignore
[D0-D3][80-BF]  # matches codepoints 0400-04FF
[D4][80-AF]     # matches codepoints 0500-052F
```

This gets even more complicated if you want bigger ranges, particularly if
they naively contain surrogate codepoints. For example, the sequence of byte
ranges for the basic multilingual plane (`[0000-FFFF]`) look like this:

```ignore
[0-7F]
[C2-DF][80-BF]
[E0][A0-BF][80-BF]
[E1-EC][80-BF][80-BF]
[ED][80-9F][80-BF]
[EE-EF][80-BF][80-BF]
```

Note that the byte ranges above will *not* match any erroneous encoding of
UTF-8, including encodings of surrogate codepoints.

And, of course, for all of Unicode (`[000000-10FFFF]`):

```ignore
[0-7F]
[C2-DF][80-BF]
[E0][A0-BF][80-BF]
[E1-EC][80-BF][80-BF]
[ED][80-9F][80-BF]
[EE-EF][80-BF][80-BF]
[F0][90-BF][80-BF][80-BF]
[F1-F3][80-BF][80-BF][80-BF]
[F4][80-8F][80-BF][80-BF]
```

This module automates the process of creating these byte ranges from ranges of
Unicode scalar values.

# Lineage

I got the idea and general implementation strategy from Russ Cox in his
[article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2.
Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?).
I also got the idea from
[Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java),
which uses it for executing automata on their term index.
*/

#![deny(missing_docs)]

use std::char;
use std::fmt;
use std::slice;

const MAX_UTF8_BYTES: usize = 4;

/// Utf8Sequence represents a sequence of byte ranges.
///
/// To match a Utf8Sequence, a candidate byte sequence must match each
/// successive range.
///
/// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte
/// sequence `\xDD\x61` would not match because `0x61 < 0x80`.
#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord)]
pub enum Utf8Sequence {
    /// One byte range.
    One(Utf8Range),
    /// Two successive byte ranges.
    Two([Utf8Range; 2]),
    /// Three successive byte ranges.
    Three([Utf8Range; 3]),
    /// Four successive byte ranges.
    Four([Utf8Range; 4]),
}

impl Utf8Sequence {
    /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value
    /// range.
    ///
    /// This assumes that `start` and `end` have the same length.
    fn from_encoded_range(start: &[u8], end: &[u8]) -> Self {
        assert_eq!(start.len(), end.len());
        match start.len() {
            2 => Utf8Sequence::Two([
                Utf8Range::new(start[0], end[0]),
                Utf8Range::new(start[1], end[1]),
            ]),
            3 => Utf8Sequence::Three([
                Utf8Range::new(start[0], end[0]),
                Utf8Range::new(start[1], end[1]),
                Utf8Range::new(start[2], end[2]),
            ]),
            4 => Utf8Sequence::Four([
                Utf8Range::new(start[0], end[0]),
                Utf8Range::new(start[1], end[1]),
                Utf8Range::new(start[2], end[2]),
                Utf8Range::new(start[3], end[3]),
            ]),
            n => unreachable!("invalid encoded length: {}", n),
        }
    }

    /// Returns the underlying sequence of byte ranges as a slice.
    pub fn as_slice(&self) -> &[Utf8Range] {
        use self::Utf8Sequence::*;
        match *self {
            One(ref r) => slice::from_ref(r),
            Two(ref r) => &r[..],
            Three(ref r) => &r[..],
            Four(ref r) => &r[..],
        }
    }

    /// Returns the number of byte ranges in this sequence.
    ///
    /// The length is guaranteed to be in the closed interval `[1, 4]`.
    pub fn len(&self) -> usize {
        self.as_slice().len()
    }

    /// Reverses the ranges in this sequence.
    ///
    /// For example, if this corresponds to the following sequence:
    ///
    /// ```ignore
    /// [D0-D3][80-BF]
    /// ```
    ///
    /// Then after reversal, it will be
    ///
    /// ```ignore
    /// [80-BF][D0-D3]
    /// ```
    ///
    /// This is useful when one is constructing a UTF-8 automaton to match
    /// character classes in reverse.
    pub fn reverse(&mut self) {
        match *self {
            Utf8Sequence::One(_) => {}
            Utf8Sequence::Two(ref mut x) => x.reverse(),
            Utf8Sequence::Three(ref mut x) => x.reverse(),
            Utf8Sequence::Four(ref mut x) => x.reverse(),
        }
    }

    /// Returns true if and only if a prefix of `bytes` matches this sequence
    /// of byte ranges.
    pub fn matches(&self, bytes: &[u8]) -> bool {
        if bytes.len() < self.len() {
            return false;
        }
        for (&b, r) in bytes.iter().zip(self) {
            if !r.matches(b) {
                return false;
            }
        }
        true
    }
}

impl<'a> IntoIterator for &'a Utf8Sequence {
    type IntoIter = slice::Iter<'a, Utf8Range>;
    type Item = &'a Utf8Range;

    fn into_iter(self) -> Self::IntoIter {
        self.as_slice().into_iter()
    }
}

impl fmt::Debug for Utf8Sequence {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::Utf8Sequence::*;
        match *self {
            One(ref r) => write!(f, "{:?}", r),
            Two(ref r) => write!(f, "{:?}{:?}", r[0], r[1]),
            Three(ref r) => write!(f, "{:?}{:?}{:?}", r[0], r[1], r[2]),
            Four(ref r) => {
                write!(f, "{:?}{:?}{:?}{:?}", r[0], r[1], r[2], r[3])
            }
        }
    }
}

/// A single inclusive range of UTF-8 bytes.
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct Utf8Range {
    /// Start of byte range (inclusive).
    pub start: u8,
    /// End of byte range (inclusive).
    pub end: u8,
}

impl Utf8Range {
    fn new(start: u8, end: u8) -> Self {
        Utf8Range { start, end }
    }

    /// Returns true if and only if the given byte is in this range.
    pub fn matches(&self, b: u8) -> bool {
        self.start <= b && b <= self.end
    }
}

impl fmt::Debug for Utf8Range {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.start == self.end {
            write!(f, "[{:X}]", self.start)
        } else {
            write!(f, "[{:X}-{:X}]", self.start, self.end)
        }
    }
}

/// An iterator over ranges of matching UTF-8 byte sequences.
///
/// The iteration represents an alternation of comprehensive byte sequences
/// that match precisely the set of UTF-8 encoded scalar values.
///
/// A byte sequence corresponds to one of the scalar values in the range given
/// if and only if it completely matches exactly one of the sequences of byte
/// ranges produced by this iterator.
///
/// Each sequence of byte ranges matches a unique set of bytes. That is, no two
/// sequences will match the same bytes.
///
/// # Example
///
/// This shows how to match an arbitrary byte sequence against a range of
/// scalar values.
///
/// ```rust
/// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence};
///
/// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool {
///     for range in seqs {
///         if range.matches(bytes) {
///             return true;
///         }
///     }
///     false
/// }
///
/// // Test the basic multilingual plane.
/// let seqs: Vec<_> = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect();
///
/// // UTF-8 encoding of 'a'.
/// assert!(matches(&seqs, &[0x61]));
/// // UTF-8 encoding of '☃' (`\u{2603}`).
/// assert!(matches(&seqs, &[0xE2, 0x98, 0x83]));
/// // UTF-8 encoding of `\u{10348}` (outside the BMP).
/// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88]));
/// // Tries to match against a UTF-8 encoding of a surrogate codepoint,
/// // which is invalid UTF-8, and therefore fails, despite the fact that
/// // the corresponding codepoint (0xD800) falls in the range given.
/// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80]));
/// // And fails against plain old invalid UTF-8.
/// assert!(!matches(&seqs, &[0xFF, 0xFF]));
/// ```
///
/// If this example seems circuitous, that's because it is! It's meant to be
/// illustrative. In practice, you could just try to decode your byte sequence
/// and compare it with the scalar value range directly. However, this is not
/// always possible (for example, in a byte based automaton).
pub struct Utf8Sequences {
    range_stack: Vec<ScalarRange>,
}

impl Utf8Sequences {
    /// Create a new iterator over UTF-8 byte ranges for the scalar value range
    /// given.
    pub fn new(start: char, end: char) -> Self {
        let mut it = Utf8Sequences { range_stack: vec![] };
        it.push(start as u32, end as u32);
        it
    }

    /// reset resets the scalar value range.
    /// Any existing state is cleared, but resources may be reused.
    ///
    /// N.B. Benchmarks say that this method is dubious.
    #[doc(hidden)]
    pub fn reset(&mut self, start: char, end: char) {
        self.range_stack.clear();
        self.push(start as u32, end as u32);
    }

    fn push(&mut self, start: u32, end: u32) {
        self.range_stack.push(ScalarRange { start, end });
    }
}

struct ScalarRange {
    start: u32,
    end: u32,
}

impl fmt::Debug for ScalarRange {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ScalarRange({:X}, {:X})", self.start, self.end)
    }
}

impl Iterator for Utf8Sequences {
    type Item = Utf8Sequence;

    fn next(&mut self) -> Option<Self::Item> {
        'TOP: while let Some(mut r) = self.range_stack.pop() {
            'INNER: loop {
                if let Some((r1, r2)) = r.split() {
                    self.push(r2.start, r2.end);
                    r.start = r1.start;
                    r.end = r1.end;
                    continue 'INNER;
                }
                if !r.is_valid() {
                    continue 'TOP;
                }
                for i in 1..MAX_UTF8_BYTES {
                    let max = max_scalar_value(i);
                    if r.start <= max && max < r.end {
                        self.push(max + 1, r.end);
                        r.end = max;
                        continue 'INNER;
                    }
                }
                if let Some(ascii_range) = r.as_ascii() {
                    return Some(Utf8Sequence::One(ascii_range));
                }
                for i in 1..MAX_UTF8_BYTES {
                    let m = (1 << (6 * i)) - 1;
                    if (r.start & !m) != (r.end & !m) {
                        if (r.start & m) != 0 {
                            self.push((r.start | m) + 1, r.end);
                            r.end = r.start | m;
                            continue 'INNER;
                        }
                        if (r.end & m) != m {
                            self.push(r.end & !m, r.end);
                            r.end = (r.end & !m) - 1;
                            continue 'INNER;
                        }
                    }
                }
                let mut start = [0; MAX_UTF8_BYTES];
                let mut end = [0; MAX_UTF8_BYTES];
                let n = r.encode(&mut start, &mut end);
                return Some(Utf8Sequence::from_encoded_range(
                    &start[0..n],
                    &end[0..n],
                ));
            }
        }
        None
    }
}

impl ScalarRange {
    /// split splits this range if it overlaps with a surrogate codepoint.
    ///
    /// Either or both ranges may be invalid.
    fn split(&self) -> Option<(ScalarRange, ScalarRange)> {
        if self.start < 0xE000 && self.end > 0xD7FF {
            Some((
                ScalarRange { start: self.start, end: 0xD7FF },
                ScalarRange { start: 0xE000, end: self.end },
            ))
        } else {
            None
        }
    }

    /// is_valid returns true if and only if start <= end.
    fn is_valid(&self) -> bool {
        self.start <= self.end
    }

    /// as_ascii returns this range as a Utf8Range if and only if all scalar
    /// values in this range can be encoded as a single byte.
    fn as_ascii(&self) -> Option<Utf8Range> {
        if self.is_ascii() {
            Some(Utf8Range::new(self.start as u8, self.end as u8))
        } else {
            None
        }
    }

    /// is_ascii returns true if the range is ASCII only (i.e., takes a single
    /// byte to encode any scalar value).
    fn is_ascii(&self) -> bool {
        self.is_valid() && self.end <= 0x7f
    }

    /// encode writes the UTF-8 encoding of the start and end of this range
    /// to the corresponding destination slices, and returns the number of
    /// bytes written.
    ///
    /// The slices should have room for at least `MAX_UTF8_BYTES`.
    fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize {
        let cs = char::from_u32(self.start).unwrap();
        let ce = char::from_u32(self.end).unwrap();
        let ss = cs.encode_utf8(start);
        let se = ce.encode_utf8(end);
        assert_eq!(ss.len(), se.len());
        ss.len()
    }
}

fn max_scalar_value(nbytes: usize) -> u32 {
    match nbytes {
        1 => 0x007F,
        2 => 0x07FF,
        3 => 0xFFFF,
        4 => 0x10FFFF,
        _ => unreachable!("invalid UTF-8 byte sequence size"),
    }
}

#[cfg(test)]
mod tests {
    use std::char;

    use utf8::{Utf8Range, Utf8Sequences};

    fn rutf8(s: u8, e: u8) -> Utf8Range {
        Utf8Range::new(s, e)
    }

    fn never_accepts_surrogate_codepoints(start: char, end: char) {
        for cp in 0xD800..0xE000 {
            let buf = encode_surrogate(cp);
            for r in Utf8Sequences::new(start, end) {
                if r.matches(&buf) {
                    panic!(
                        "Sequence ({:X}, {:X}) contains range {:?}, \
                         which matches surrogate code point {:X} \
                         with encoded bytes {:?}",
                        start as u32, end as u32, r, cp, buf,
                    );
                }
            }
        }
    }

    #[test]
    fn codepoints_no_surrogates() {
        never_accepts_surrogate_codepoints('\u{0}', '\u{FFFF}');
        never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFF}');
        never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFE}');
        never_accepts_surrogate_codepoints('\u{80}', '\u{10FFFF}');
        never_accepts_surrogate_codepoints('\u{D7FF}', '\u{E000}');
    }

    #[test]
    fn single_codepoint_one_sequence() {
        // Tests that every range of scalar values that contains a single
        // scalar value is recognized by one sequence of byte ranges.
        for i in 0x0..(0x10FFFF + 1) {
            let c = match char::from_u32(i) {
                None => continue,
                Some(c) => c,
            };
            let seqs: Vec<_> = Utf8Sequences::new(c, c).collect();
            assert_eq!(seqs.len(), 1);
        }
    }

    #[test]
    fn bmp() {
        use utf8::Utf8Sequence::*;

        let seqs = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect::<Vec<_>>();
        assert_eq!(
            seqs,
            vec![
                One(rutf8(0x0, 0x7F)),
                Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]),
                Three([
                    rutf8(0xE0, 0xE0),
                    rutf8(0xA0, 0xBF),
                    rutf8(0x80, 0xBF)
                ]),
                Three([
                    rutf8(0xE1, 0xEC),
                    rutf8(0x80, 0xBF),
                    rutf8(0x80, 0xBF)
                ]),
                Three([
                    rutf8(0xED, 0xED),
                    rutf8(0x80, 0x9F),
                    rutf8(0x80, 0xBF)
                ]),
                Three([
                    rutf8(0xEE, 0xEF),
                    rutf8(0x80, 0xBF),
                    rutf8(0x80, 0xBF)
                ]),
            ]
        );
    }

    #[test]
    fn reverse() {
        use utf8::Utf8Sequence::*;

        let mut s = One(rutf8(0xA, 0xB));
        s.reverse();
        assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]);

        let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]);
        s.reverse();
        assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]);

        let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]);
        s.reverse();
        assert_eq!(
            s.as_slice(),
            &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)]
        );

        let mut s = Four([
            rutf8(0xA, 0xB),
            rutf8(0xB, 0xC),
            rutf8(0xC, 0xD),
            rutf8(0xD, 0xE),
        ]);
        s.reverse();
        assert_eq!(
            s.as_slice(),
            &[
                rutf8(0xD, 0xE),
                rutf8(0xC, 0xD),
                rutf8(0xB, 0xC),
                rutf8(0xA, 0xB)
            ]
        );
    }

    fn encode_surrogate(cp: u32) -> [u8; 3] {
        const TAG_CONT: u8 = 0b1000_0000;
        const TAG_THREE_B: u8 = 0b1110_0000;

        assert!(0xD800 <= cp && cp < 0xE000);
        let mut dst = [0; 3];
        dst[0] = (cp >> 12 & 0x0F) as u8 | TAG_THREE_B;
        dst[1] = (cp >> 6 & 0x3F) as u8 | TAG_CONT;
        dst[2] = (cp & 0x3F) as u8 | TAG_CONT;
        dst
    }
}