1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright 2018 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{counter, iv::Iv, quic::Sample, Block, Direction, BLOCK_LEN};
use crate::{bits::BitLength, c, cpu, endian::*, error, polyfill};

pub(crate) struct Key {
    inner: AES_KEY,
    cpu_features: cpu::Features,
}

macro_rules! set_encrypt_key {
    ( $name:ident, $bytes:expr, $key_bits:expr, $key:expr ) => {{
        extern "C" {
            fn $name(user_key: *const u8, bits: c::uint, key: &mut AES_KEY) -> c::int;
        }
        set_encrypt_key($name, $bytes, $key_bits, $key)
    }};
}

#[inline]
fn set_encrypt_key(
    f: unsafe extern "C" fn(*const u8, c::uint, &mut AES_KEY) -> c::int,
    bytes: &[u8],
    key_bits: BitLength,
    key: &mut AES_KEY,
) -> Result<(), error::Unspecified> {
    // Unusually, in this case zero means success and non-zero means failure.
    if 0 == unsafe { f(bytes.as_ptr(), key_bits.as_usize_bits() as c::uint, key) } {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

macro_rules! encrypt_block {
    ($name:ident, $block:expr, $key:expr) => {{
        extern "C" {
            fn $name(a: &Block, r: *mut Block, key: &AES_KEY);
        }
        encrypt_block_($name, $block, $key)
    }};
}

#[inline]
fn encrypt_block_(
    f: unsafe extern "C" fn(&Block, *mut Block, &AES_KEY),
    a: Block,
    key: &Key,
) -> Block {
    let mut result = core::mem::MaybeUninit::uninit();
    unsafe {
        f(&a, result.as_mut_ptr(), &key.inner);
        result.assume_init()
    }
}

macro_rules! ctr32_encrypt_blocks {
    ($name:ident, $in_out:expr, $in_prefix_len:expr, $key:expr, $ivec:expr ) => {{
        extern "C" {
            fn $name(
                input: *const u8,
                output: *mut u8,
                blocks: c::size_t,
                key: &AES_KEY,
                ivec: &Counter,
            );
        }
        ctr32_encrypt_blocks_($name, $in_out, $in_prefix_len, $key, $ivec)
    }};
}

#[inline]
fn ctr32_encrypt_blocks_(
    f: unsafe extern "C" fn(
        input: *const u8,
        output: *mut u8,
        blocks: c::size_t,
        key: &AES_KEY,
        ivec: &Counter,
    ),
    in_out: &mut [u8],
    in_prefix_len: usize,
    key: &AES_KEY,
    ctr: &mut Counter,
) {
    let in_out_len = in_out.len().checked_sub(in_prefix_len).unwrap();
    assert_eq!(in_out_len % BLOCK_LEN, 0);

    let blocks = in_out_len / BLOCK_LEN;
    let blocks_u32 = blocks as u32;
    assert_eq!(blocks, polyfill::usize_from_u32(blocks_u32));

    let input = in_out[in_prefix_len..].as_ptr();
    let output = in_out.as_mut_ptr();

    unsafe {
        f(input, output, blocks, &key, ctr);
    }
    ctr.increment_by_less_safe(blocks_u32);
}

impl Key {
    #[inline]
    pub fn new(
        bytes: &[u8],
        variant: Variant,
        cpu_features: cpu::Features,
    ) -> Result<Self, error::Unspecified> {
        let key_bits = match variant {
            Variant::AES_128 => BitLength::from_usize_bits(128),
            Variant::AES_256 => BitLength::from_usize_bits(256),
        };
        if BitLength::from_usize_bytes(bytes.len())? != key_bits {
            return Err(error::Unspecified);
        }

        let mut key = AES_KEY {
            rd_key: [0u32; 4 * (MAX_ROUNDS + 1)],
            rounds: 0,
        };

        match detect_implementation(cpu_features) {
            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "x86_64",
                target_arch = "x86"
            ))]
            Implementation::HWAES => {
                set_encrypt_key!(GFp_aes_hw_set_encrypt_key, bytes, key_bits, &mut key)?
            }

            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "x86_64",
                target_arch = "x86"
            ))]
            Implementation::VPAES_BSAES => {
                set_encrypt_key!(GFp_vpaes_set_encrypt_key, bytes, key_bits, &mut key)?
            }

            #[cfg(not(target_arch = "aarch64"))]
            Implementation::NOHW => {
                set_encrypt_key!(GFp_aes_nohw_set_encrypt_key, bytes, key_bits, &mut key)?
            }
        };

        Ok(Self {
            inner: key,
            cpu_features,
        })
    }

    #[inline]
    pub fn encrypt_block(&self, a: Block) -> Block {
        match detect_implementation(self.cpu_features) {
            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "x86_64",
                target_arch = "x86"
            ))]
            Implementation::HWAES => encrypt_block!(GFp_aes_hw_encrypt, a, self),

            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "x86_64",
                target_arch = "x86"
            ))]
            Implementation::VPAES_BSAES => encrypt_block!(GFp_vpaes_encrypt, a, self),

            #[cfg(not(target_arch = "aarch64"))]
            Implementation::NOHW => encrypt_block!(GFp_aes_nohw_encrypt, a, self),
        }
    }

    #[inline]
    pub fn encrypt_iv_xor_block(&self, iv: Iv, input: Block) -> Block {
        let mut output = self.encrypt_block(Block::from(&iv.into_bytes_less_safe()));
        output.bitxor_assign(input);
        output
    }

    #[inline]
    pub(super) fn ctr32_encrypt_blocks(
        &self,
        in_out: &mut [u8],
        direction: Direction,
        ctr: &mut Counter,
    ) {
        let in_prefix_len = match direction {
            Direction::Opening { in_prefix_len } => in_prefix_len,
            Direction::Sealing => 0,
        };

        let in_out_len = in_out.len().checked_sub(in_prefix_len).unwrap();

        assert_eq!(in_out_len % BLOCK_LEN, 0);

        match detect_implementation(self.cpu_features) {
            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "x86_64",
                target_arch = "x86"
            ))]
            Implementation::HWAES => ctr32_encrypt_blocks!(
                GFp_aes_hw_ctr32_encrypt_blocks,
                in_out,
                in_prefix_len,
                &self.inner,
                ctr
            ),

            #[cfg(any(target_arch = "aarch64", target_arch = "arm", target_arch = "x86_64"))]
            Implementation::VPAES_BSAES => {
                // 8 blocks is the cut-off point where it's faster to use BSAES.
                #[cfg(target_arch = "arm")]
                let in_out = if in_out_len >= 8 * BLOCK_LEN {
                    let remainder = in_out_len % (8 * BLOCK_LEN);
                    let bsaes_in_out_len = if remainder < (4 * BLOCK_LEN) {
                        in_out_len - remainder
                    } else {
                        in_out_len
                    };

                    let mut bsaes_key = AES_KEY {
                        rd_key: [0u32; 4 * (MAX_ROUNDS + 1)],
                        rounds: 0,
                    };
                    extern "C" {
                        fn GFp_vpaes_encrypt_key_to_bsaes(
                            bsaes_key: &mut AES_KEY,
                            vpaes_key: &AES_KEY,
                        );
                    }
                    unsafe {
                        GFp_vpaes_encrypt_key_to_bsaes(&mut bsaes_key, &self.inner);
                    }
                    ctr32_encrypt_blocks!(
                        GFp_bsaes_ctr32_encrypt_blocks,
                        &mut in_out[..(bsaes_in_out_len + in_prefix_len)],
                        in_prefix_len,
                        &bsaes_key,
                        ctr
                    );

                    &mut in_out[bsaes_in_out_len..]
                } else {
                    in_out
                };

                ctr32_encrypt_blocks!(
                    GFp_vpaes_ctr32_encrypt_blocks,
                    in_out,
                    in_prefix_len,
                    &self.inner,
                    ctr
                )
            }

            #[cfg(any(target_arch = "x86"))]
            Implementation::VPAES_BSAES => {
                super::shift::shift_full_blocks(in_out, in_prefix_len, |input| {
                    self.encrypt_iv_xor_block(ctr.increment(), Block::from(input))
                });
            }

            #[cfg(not(target_arch = "aarch64"))]
            Implementation::NOHW => ctr32_encrypt_blocks!(
                GFp_aes_nohw_ctr32_encrypt_blocks,
                in_out,
                in_prefix_len,
                &self.inner,
                ctr
            ),
        }
    }

    pub fn new_mask(&self, sample: Sample) -> [u8; 5] {
        let block = self.encrypt_block(Block::from(&sample));

        let mut out: [u8; 5] = [0; 5];
        out.copy_from_slice(&block.as_ref()[..5]);

        out
    }

    #[cfg(target_arch = "x86_64")]
    #[must_use]
    pub fn is_aes_hw(&self) -> bool {
        match detect_implementation(self.cpu_features) {
            Implementation::HWAES => true,
            _ => false,
        }
    }

    #[cfg(target_arch = "x86_64")]
    #[must_use]
    pub(super) fn inner_less_safe(&self) -> &AES_KEY {
        &self.inner
    }
}

// Keep this in sync with AES_KEY in aes.h.
#[repr(C)]
pub(super) struct AES_KEY {
    pub rd_key: [u32; 4 * (MAX_ROUNDS + 1)],
    pub rounds: c::uint,
}

// Keep this in sync with `AES_MAXNR` in aes.h.
const MAX_ROUNDS: usize = 14;

pub enum Variant {
    AES_128,
    AES_256,
}

pub type Counter = counter::Counter<BigEndian<u32>>;

#[repr(C)] // Only so `Key` can be `#[repr(C)]`
#[derive(Clone, Copy)]
pub enum Implementation {
    #[cfg(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "x86_64",
        target_arch = "x86"
    ))]
    HWAES = 1,

    // On "arm" only, this indicates that the bsaes implementation may be used.
    #[cfg(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "x86_64",
        target_arch = "x86"
    ))]
    VPAES_BSAES = 2,

    #[cfg(not(target_arch = "aarch64"))]
    NOHW = 3,
}

fn detect_implementation(cpu_features: cpu::Features) -> Implementation {
    // `cpu_features` is only used for specific platforms.
    #[cfg(not(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "x86_64",
        target_arch = "x86"
    )))]
    let _cpu_features = cpu_features;

    #[cfg(any(
        target_arch = "aarch64",
        target_arch = "arm",
        target_arch = "x86_64",
        target_arch = "x86"
    ))]
    {
        if cpu::intel::AES.available(cpu_features) || cpu::arm::AES.available(cpu_features) {
            return Implementation::HWAES;
        }
    }

    #[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
    {
        if cpu::intel::SSSE3.available(cpu_features) {
            return Implementation::VPAES_BSAES;
        }
    }

    #[cfg(target_arch = "arm")]
    {
        if cpu::arm::NEON.available(cpu_features) {
            return Implementation::VPAES_BSAES;
        }
    }

    #[cfg(target_arch = "aarch64")]
    {
        Implementation::VPAES_BSAES
    }

    #[cfg(not(target_arch = "aarch64"))]
    {
        Implementation::NOHW
    }
}

#[cfg(test)]
mod tests {
    use super::{super::BLOCK_LEN, *};
    use crate::test;
    use core::convert::TryInto;

    #[test]
    pub fn test_aes() {
        test::run(test_file!("aes_tests.txt"), |section, test_case| {
            assert_eq!(section, "");
            let key = consume_key(test_case, "Key");
            let input = test_case.consume_bytes("Input");
            let input: &[u8; BLOCK_LEN] = input.as_slice().try_into()?;
            let expected_output = test_case.consume_bytes("Output");

            let block = Block::from(input);
            let output = key.encrypt_block(block);
            assert_eq!(output.as_ref(), &expected_output[..]);

            Ok(())
        })
    }

    fn consume_key(test_case: &mut test::TestCase, name: &str) -> Key {
        let key = test_case.consume_bytes(name);
        let variant = match key.len() {
            16 => Variant::AES_128,
            32 => Variant::AES_256,
            _ => unreachable!(),
        };
        Key::new(&key[..], variant, cpu::features()).unwrap()
    }
}