1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! HMAC is specified in [RFC 2104].
//!
//! After a `Key` is constructed, it can be used for multiple signing or
//! verification operations. Separating the construction of the key from the
//! rest of the HMAC operation allows the per-key precomputation to be done
//! only once, instead of it being done in every HMAC operation.
//!
//! Frequently all the data to be signed in a message is available in a single
//! contiguous piece. In that case, the module-level `sign` function can be
//! used. Otherwise, if the input is in multiple parts, `Context` should be
//! used.
//!
//! # Examples:
//!
//! ## Signing a value and verifying it wasn't tampered with
//!
//! ```
//! use ring::{hmac, rand};
//!
//! let rng = rand::SystemRandom::new();
//! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?;
//!
//! let msg = "hello, world";
//!
//! let tag = hmac::sign(&key, msg.as_bytes());
//!
//! // [We give access to the message to an untrusted party, and they give it
//! // back to us. We need to verify they didn't tamper with it.]
//!
//! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?;
//!
//! # Ok::<(), ring::error::Unspecified>(())
//! ```
//!
//! ## Using the one-shot API:
//!
//! ```
//! use ring::{digest, hmac, rand};
//! use ring::rand::SecureRandom;
//!
//! let msg = "hello, world";
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let rng = rand::SystemRandom::new();
//! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose();
//!
//! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
//! let tag = hmac::sign(&s_key, msg.as_bytes());
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
//! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?;
//!
//! # Ok::<(), ring::error::Unspecified>(())
//! ```
//!
//! ## Using the multi-part API:
//! ```
//! use ring::{digest, hmac, rand};
//! use ring::rand::SecureRandom;
//!
//! let parts = ["hello", ", ", "world"];
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let rng = rand::SystemRandom::new();
//! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose();
//!
//! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
//! let mut s_ctx = hmac::Context::with_key(&s_key);
//! for part in &parts {
//!     s_ctx.update(part.as_bytes());
//! }
//! let tag = s_ctx.sign();
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
//! let mut msg = Vec::<u8>::new();
//! for part in &parts {
//!     msg.extend(part.as_bytes());
//! }
//! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?;
//!
//! # Ok::<(), ring::error::Unspecified>(())
//! ```
//!
//! [RFC 2104]: https://tools.ietf.org/html/rfc2104
//! [code for `ring::pbkdf2`]:
//!     https://github.com/briansmith/ring/blob/main/src/pbkdf2.rs
//! [code for `ring::hkdf`]:
//!     https://github.com/briansmith/ring/blob/main/src/hkdf.rs

use crate::{constant_time, digest, error, hkdf, rand};

/// An HMAC algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Algorithm(&'static digest::Algorithm);

impl Algorithm {
    /// The digest algorithm this HMAC algorithm is based on.
    #[inline]
    pub fn digest_algorithm(&self) -> &'static digest::Algorithm {
        self.0
    }
}

/// HMAC using SHA-1. Obsolete.
pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY);

/// HMAC using SHA-256.
pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256);

/// HMAC using SHA-384.
pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384);

/// HMAC using SHA-512.
pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512);

/// A deprecated alias for `Tag`.
#[deprecated(note = "`Signature` was renamed to `Tag`. This alias will be removed soon.")]
pub type Signature = Tag;

/// An HMAC tag.
///
/// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice.
#[derive(Clone, Copy, Debug)]
pub struct Tag(digest::Digest);

impl AsRef<[u8]> for Tag {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

/// A key to use for HMAC signing.
#[derive(Clone)]
pub struct Key {
    inner: digest::BlockContext,
    outer: digest::BlockContext,
}

/// `hmac::SigningKey` was renamed to `hmac::Key`.
#[deprecated(note = "Renamed to `hmac::Key`.")]
pub type SigningKey = Key;

/// `hmac::VerificationKey` was merged into `hmac::Key`.
#[deprecated(
    note = "The distinction between verification & signing keys was removed. Use `hmac::Key`."
)]
pub type VerificationKey = Key;

impl core::fmt::Debug for Key {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        f.debug_struct("Key")
            .field("algorithm", self.algorithm().digest_algorithm())
            .finish()
    }
}

impl Key {
    /// Generate an HMAC signing key using the given digest algorithm with a
    /// random value generated from `rng`.
    ///
    /// The key will be `digest_alg.output_len` bytes long, based on the
    /// recommendation in https://tools.ietf.org/html/rfc2104#section-3.
    pub fn generate(
        algorithm: Algorithm,
        rng: &dyn rand::SecureRandom,
    ) -> Result<Self, error::Unspecified> {
        Self::construct(algorithm, |buf| rng.fill(buf))
    }

    fn construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, error::Unspecified>
    where
        F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>,
    {
        let mut key_bytes = [0; digest::MAX_OUTPUT_LEN];
        let key_bytes = &mut key_bytes[..algorithm.0.output_len];
        fill(key_bytes)?;
        Ok(Self::new(algorithm, key_bytes))
    }

    /// Construct an HMAC signing key using the given digest algorithm and key
    /// value.
    ///
    /// `key_value` should be a value generated using a secure random number
    /// generator (e.g. the `key_value` output by
    /// `SealingKey::generate_serializable()`) or derived from a random key by
    /// a key derivation function (e.g. `ring::hkdf`). In particular,
    /// `key_value` shouldn't be a password.
    ///
    /// As specified in RFC 2104, if `key_value` is shorter than the digest
    /// algorithm's block length (as returned by `digest::Algorithm::block_len`,
    /// not the digest length returned by `digest::Algorithm::output_len`) then
    /// it will be padded with zeros. Similarly, if it is longer than the block
    /// length then it will be compressed using the digest algorithm.
    ///
    /// You should not use keys larger than the `digest_alg.block_len` because
    /// the truncation described above reduces their strength to only
    /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be
    /// removed in a future version of *ring*.
    pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self {
        let digest_alg = algorithm.0;
        let mut key = Self {
            inner: digest::BlockContext::new(digest_alg),
            outer: digest::BlockContext::new(digest_alg),
        };

        let key_hash;
        let key_value = if key_value.len() <= digest_alg.block_len {
            key_value
        } else {
            key_hash = digest::digest(digest_alg, key_value);
            key_hash.as_ref()
        };

        const IPAD: u8 = 0x36;

        let mut padded_key = [IPAD; digest::MAX_BLOCK_LEN];
        let padded_key = &mut padded_key[..digest_alg.block_len];

        // If the key is shorter than one block then we're supposed to act like
        // it is padded with zero bytes up to the block length. `x ^ 0 == x` so
        // we can just leave the trailing bytes of `padded_key` untouched.
        for (padded_key, key_value) in padded_key.iter_mut().zip(key_value.iter()) {
            *padded_key ^= *key_value;
        }
        key.inner.update(&padded_key);

        const OPAD: u8 = 0x5C;

        // Remove the `IPAD` masking, leaving the unmasked padded key, then
        // mask with `OPAD`, all in one step.
        for b in padded_key.iter_mut() {
            *b ^= IPAD ^ OPAD;
        }
        key.outer.update(&padded_key);

        key
    }

    /// The digest algorithm for the key.
    #[inline]
    pub fn algorithm(&self) -> Algorithm {
        Algorithm(self.inner.algorithm)
    }
}

impl hkdf::KeyType for Algorithm {
    fn len(&self) -> usize {
        self.digest_algorithm().output_len
    }
}

impl From<hkdf::Okm<'_, Algorithm>> for Key {
    fn from(okm: hkdf::Okm<Algorithm>) -> Self {
        Key::construct(*okm.len(), |buf| okm.fill(buf)).unwrap()
    }
}

/// A context for multi-step (Init-Update-Finish) HMAC signing.
///
/// Use `sign` for single-step HMAC signing.
#[derive(Clone)]
pub struct Context {
    inner: digest::Context,
    outer: digest::BlockContext,
}

/// `hmac::SigningContext` was renamed to `hmac::Context`.
#[deprecated(note = "Renamed to `hmac::Context`.")]
pub type SigningContext = Context;

impl core::fmt::Debug for Context {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        f.debug_struct("Context")
            .field("algorithm", self.inner.algorithm())
            .finish()
    }
}

impl Context {
    /// Constructs a new HMAC signing context using the given digest algorithm
    /// and key.
    pub fn with_key(signing_key: &Key) -> Self {
        Self {
            inner: digest::Context::clone_from(&signing_key.inner),
            outer: signing_key.outer.clone(),
        }
    }

    /// Updates the HMAC with all the data in `data`. `update` may be called
    /// zero or more times until `finish` is called.
    pub fn update(&mut self, data: &[u8]) {
        self.inner.update(data);
    }

    /// Finalizes the HMAC calculation and returns the HMAC value. `sign`
    /// consumes the context so it cannot be (mis-)used after `sign` has been
    /// called.
    ///
    /// It is generally not safe to implement HMAC verification by comparing
    /// the return value of `sign` to a tag. Use `verify` for verification
    /// instead.
    pub fn sign(self) -> Tag {
        let algorithm = self.inner.algorithm();
        let mut pending = [0u8; digest::MAX_BLOCK_LEN];
        let pending = &mut pending[..algorithm.block_len];
        let num_pending = algorithm.output_len;
        pending[..num_pending].copy_from_slice(self.inner.finish().as_ref());
        Tag(self.outer.finish(pending, num_pending))
    }
}

/// Calculates the HMAC of `data` using the key `key` in one step.
///
/// Use `Context` to calculate HMACs where the input is in multiple parts.
///
/// It is generally not safe to implement HMAC verification by comparing the
/// return value of `sign` to a tag. Use `verify` for verification instead.
pub fn sign(key: &Key, data: &[u8]) -> Tag {
    let mut ctx = Context::with_key(key);
    ctx.update(data);
    ctx.sign()
}

/// Calculates the HMAC of `data` using the signing key `key`, and verifies
/// whether the resultant value equals `tag`, in one step.
///
/// This is logically equivalent to, but more efficient than, constructing a
/// `Key` with the same value as `key` and then using `verify`.
///
/// The verification will be done in constant time to prevent timing attacks.
pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified> {
    constant_time::verify_slices_are_equal(sign(key, data).as_ref(), tag)
}

#[cfg(test)]
mod tests {
    use crate::{hmac, rand};

    // Make sure that `Key::generate` and `verify_with_own_key` aren't
    // completely wacky.
    #[test]
    pub fn hmac_signing_key_coverage() {
        let rng = rand::SystemRandom::new();

        const HELLO_WORLD_GOOD: &[u8] = b"hello, world";
        const HELLO_WORLD_BAD: &[u8] = b"hello, worle";

        for algorithm in &[
            hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
            hmac::HMAC_SHA256,
            hmac::HMAC_SHA384,
            hmac::HMAC_SHA512,
        ] {
            let key = hmac::Key::generate(*algorithm, &rng).unwrap();
            let tag = hmac::sign(&key, HELLO_WORLD_GOOD);
            assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok());
            assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err())
        }
    }
}