1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
//! An implementation of asynchronous process management for Tokio. //! //! This module provides a [`Command`] struct that imitates the interface of the //! [`std::process::Command`] type in the standard library, but provides asynchronous versions of //! functions that create processes. These functions (`spawn`, `status`, `output` and their //! variants) return "future aware" types that interoperate with Tokio. The asynchronous process //! support is provided through signal handling on Unix and system APIs on Windows. //! //! [`std::process::Command`]: std::process::Command //! //! # Examples //! //! Here's an example program which will spawn `echo hello world` and then wait //! for it complete. //! //! ```no_run //! use tokio::process::Command; //! //! #[tokio::main] //! async fn main() -> Result<(), Box<dyn std::error::Error>> { //! // The usage is the same as with the standard library's `Command` type, however the value //! // returned from `spawn` is a `Result` containing a `Future`. //! let child = Command::new("echo").arg("hello").arg("world") //! .spawn(); //! //! // Make sure our child succeeded in spawning and process the result //! let future = child.expect("failed to spawn"); //! //! // Await until the future (and the command) completes //! let status = future.await?; //! println!("the command exited with: {}", status); //! Ok(()) //! } //! ``` //! //! Next, let's take a look at an example where we not only spawn `echo hello //! world` but we also capture its output. //! //! ```no_run //! use tokio::process::Command; //! //! #[tokio::main] //! async fn main() -> Result<(), Box<dyn std::error::Error>> { //! // Like above, but use `output` which returns a future instead of //! // immediately returning the `Child`. //! let output = Command::new("echo").arg("hello").arg("world") //! .output(); //! //! let output = output.await?; //! //! assert!(output.status.success()); //! assert_eq!(output.stdout, b"hello world\n"); //! Ok(()) //! } //! ``` //! //! We can also read input line by line. //! //! ```no_run //! use tokio::io::{BufReader, AsyncBufReadExt}; //! use tokio::process::Command; //! //! use std::process::Stdio; //! //! #[tokio::main] //! async fn main() -> Result<(), Box<dyn std::error::Error>> { //! let mut cmd = Command::new("cat"); //! //! // Specify that we want the command's standard output piped back to us. //! // By default, standard input/output/error will be inherited from the //! // current process (for example, this means that standard input will //! // come from the keyboard and standard output/error will go directly to //! // the terminal if this process is invoked from the command line). //! cmd.stdout(Stdio::piped()); //! //! let mut child = cmd.spawn() //! .expect("failed to spawn command"); //! //! let stdout = child.stdout.take() //! .expect("child did not have a handle to stdout"); //! //! let mut reader = BufReader::new(stdout).lines(); //! //! // Ensure the child process is spawned in the runtime so it can //! // make progress on its own while we await for any output. //! tokio::spawn(async { //! let status = child.await //! .expect("child process encountered an error"); //! //! println!("child status was: {}", status); //! }); //! //! while let Some(line) = reader.next_line().await? { //! println!("Line: {}", line); //! } //! //! Ok(()) //! } //! ``` //! //! # Caveats //! //! Similar to the behavior to the standard library, and unlike the futures //! paradigm of dropping-implies-cancellation, a spawned process will, by //! default, continue to execute even after the `Child` handle has been dropped. //! //! The `Command::kill_on_drop` method can be used to modify this behavior //! and kill the child process if the `Child` wrapper is dropped before it //! has exited. //! //! [`Command`]: crate::process::Command #[path = "unix/mod.rs"] #[cfg(unix)] mod imp; #[path = "windows.rs"] #[cfg(windows)] mod imp; mod kill; use crate::io::{AsyncRead, AsyncWrite}; use crate::process::kill::Kill; use std::ffi::OsStr; use std::future::Future; use std::io; #[cfg(unix)] use std::os::unix::process::CommandExt; #[cfg(windows)] use std::os::windows::process::CommandExt; use std::path::Path; use std::pin::Pin; use std::process::{Command as StdCommand, ExitStatus, Output, Stdio}; use std::task::Context; use std::task::Poll; /// This structure mimics the API of [`std::process::Command`] found in the standard library, but /// replaces functions that create a process with an asynchronous variant. The main provided /// asynchronous functions are [spawn](Command::spawn), [status](Command::status), and /// [output](Command::output). /// /// `Command` uses asynchronous versions of some `std` types (for example [`Child`]). /// /// [`std::process::Command`]: std::process::Command /// [`Child`]: struct@Child #[derive(Debug)] pub struct Command { std: StdCommand, kill_on_drop: bool, } pub(crate) struct SpawnedChild { child: imp::Child, stdin: Option<imp::ChildStdin>, stdout: Option<imp::ChildStdout>, stderr: Option<imp::ChildStderr>, } impl Command { /// Constructs a new `Command` for launching the program at /// path `program`, with the following default configuration: /// /// * No arguments to the program /// * Inherit the current process's environment /// * Inherit the current process's working directory /// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output` /// /// Builder methods are provided to change these defaults and /// otherwise configure the process. /// /// If `program` is not an absolute path, the `PATH` will be searched in /// an OS-defined way. /// /// The search path to be used may be controlled by setting the /// `PATH` environment variable on the Command, /// but this has some implementation limitations on Windows /// (see issue [rust-lang/rust#37519]). /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// let command = Command::new("sh"); /// ``` /// /// [rust-lang/rust#37519]: https://github.com/rust-lang/rust/issues/37519 pub fn new<S: AsRef<OsStr>>(program: S) -> Command { Self::from(StdCommand::new(program)) } /// Adds an argument to pass to the program. /// /// Only one argument can be passed per use. So instead of: /// /// ```no_run /// tokio::process::Command::new("sh") /// .arg("-C /path/to/repo"); /// ``` /// /// usage would be: /// /// ```no_run /// tokio::process::Command::new("sh") /// .arg("-C") /// .arg("/path/to/repo"); /// ``` /// /// To pass multiple arguments see [`args`]. /// /// [`args`]: method@Self::args /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .arg("-l") /// .arg("-a"); /// ``` pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command { self.std.arg(arg); self } /// Adds multiple arguments to pass to the program. /// /// To pass a single argument see [`arg`]. /// /// [`arg`]: method@Self::arg /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .args(&["-l", "-a"]); /// ``` pub fn args<I, S>(&mut self, args: I) -> &mut Command where I: IntoIterator<Item = S>, S: AsRef<OsStr>, { self.std.args(args); self } /// Inserts or updates an environment variable mapping. /// /// Note that environment variable names are case-insensitive (but case-preserving) on Windows, /// and case-sensitive on all other platforms. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .env("PATH", "/bin"); /// ``` pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command where K: AsRef<OsStr>, V: AsRef<OsStr>, { self.std.env(key, val); self } /// Adds or updates multiple environment variable mappings. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// use std::process::{Stdio}; /// use std::env; /// use std::collections::HashMap; /// /// let filtered_env : HashMap<String, String> = /// env::vars().filter(|&(ref k, _)| /// k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH" /// ).collect(); /// /// let command = Command::new("printenv") /// .stdin(Stdio::null()) /// .stdout(Stdio::inherit()) /// .env_clear() /// .envs(&filtered_env); /// ``` pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command where I: IntoIterator<Item = (K, V)>, K: AsRef<OsStr>, V: AsRef<OsStr>, { self.std.envs(vars); self } /// Removes an environment variable mapping. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .env_remove("PATH"); /// ``` pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command { self.std.env_remove(key); self } /// Clears the entire environment map for the child process. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .env_clear(); /// ``` pub fn env_clear(&mut self) -> &mut Command { self.std.env_clear(); self } /// Sets the working directory for the child process. /// /// # Platform-specific behavior /// /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous /// whether it should be interpreted relative to the parent's working /// directory or relative to `current_dir`. The behavior in this case is /// platform specific and unstable, and it's recommended to use /// [`canonicalize`] to get an absolute program path instead. /// /// [`canonicalize`]: crate::fs::canonicalize() /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .current_dir("/bin"); /// ``` pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command { self.std.current_dir(dir); self } /// Sets configuration for the child process's standard input (stdin) handle. /// /// Defaults to [`inherit`] when used with `spawn` or `status`, and /// defaults to [`piped`] when used with `output`. /// /// [`inherit`]: std::process::Stdio::inherit /// [`piped`]: std::process::Stdio::piped /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use std::process::{Stdio}; /// use tokio::process::Command; /// /// let command = Command::new("ls") /// .stdin(Stdio::null()); /// ``` pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { self.std.stdin(cfg); self } /// Sets configuration for the child process's standard output (stdout) handle. /// /// Defaults to [`inherit`] when used with `spawn` or `status`, and /// defaults to [`piped`] when used with `output`. /// /// [`inherit`]: std::process::Stdio::inherit /// [`piped`]: std::process::Stdio::piped /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command;; /// use std::process::Stdio; /// /// let command = Command::new("ls") /// .stdout(Stdio::null()); /// ``` pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { self.std.stdout(cfg); self } /// Sets configuration for the child process's standard error (stderr) handle. /// /// Defaults to [`inherit`] when used with `spawn` or `status`, and /// defaults to [`piped`] when used with `output`. /// /// [`inherit`]: std::process::Stdio::inherit /// [`piped`]: std::process::Stdio::piped /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command;; /// use std::process::{Stdio}; /// /// let command = Command::new("ls") /// .stderr(Stdio::null()); /// ``` pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { self.std.stderr(cfg); self } /// Controls whether a `kill` operation should be invoked on a spawned child /// process when its corresponding `Child` handle is dropped. /// /// By default, this value is assumed to be `false`, meaning the next spawned /// process will not be killed on drop, similar to the behavior of the standard /// library. pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command { self.kill_on_drop = kill_on_drop; self } /// Sets the [process creation flags][1] to be passed to `CreateProcess`. /// /// These will always be ORed with `CREATE_UNICODE_ENVIRONMENT`. /// /// [1]: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863(v=vs.85).aspx #[cfg(windows)] pub fn creation_flags(&mut self, flags: u32) -> &mut Command { self.std.creation_flags(flags); self } /// Sets the child process's user ID. This translates to a /// `setuid` call in the child process. Failure in the `setuid` /// call will cause the spawn to fail. #[cfg(unix)] pub fn uid(&mut self, id: u32) -> &mut Command { self.std.uid(id); self } /// Similar to `uid` but sets the group ID of the child process. This has /// the same semantics as the `uid` field. #[cfg(unix)] pub fn gid(&mut self, id: u32) -> &mut Command { self.std.gid(id); self } /// Schedules a closure to be run just before the `exec` function is /// invoked. /// /// The closure is allowed to return an I/O error whose OS error code will /// be communicated back to the parent and returned as an error from when /// the spawn was requested. /// /// Multiple closures can be registered and they will be called in order of /// their registration. If a closure returns `Err` then no further closures /// will be called and the spawn operation will immediately return with a /// failure. /// /// # Safety /// /// This closure will be run in the context of the child process after a /// `fork`. This primarily means that any modifications made to memory on /// behalf of this closure will **not** be visible to the parent process. /// This is often a very constrained environment where normal operations /// like `malloc` or acquiring a mutex are not guaranteed to work (due to /// other threads perhaps still running when the `fork` was run). /// /// This also means that all resources such as file descriptors and /// memory-mapped regions got duplicated. It is your responsibility to make /// sure that the closure does not violate library invariants by making /// invalid use of these duplicates. /// /// When this closure is run, aspects such as the stdio file descriptors and /// working directory have successfully been changed, so output to these /// locations may not appear where intended. #[cfg(unix)] pub unsafe fn pre_exec<F>(&mut self, f: F) -> &mut Command where F: FnMut() -> io::Result<()> + Send + Sync + 'static, { self.std.pre_exec(f); self } /// Executes the command as a child process, returning a handle to it. /// /// By default, stdin, stdout and stderr are inherited from the parent. /// /// This method will spawn the child process synchronously and return a /// handle to a future-aware child process. The `Child` returned implements /// `Future` itself to acquire the `ExitStatus` of the child, and otherwise /// the `Child` has methods to acquire handles to the stdin, stdout, and /// stderr streams. /// /// All I/O this child does will be associated with the current default /// event loop. /// /// # Caveats /// /// Similar to the behavior to the standard library, and unlike the futures /// paradigm of dropping-implies-cancellation, the spawned process will, by /// default, continue to execute even after the `Child` handle has been dropped. /// /// The `Command::kill_on_drop` method can be used to modify this behavior /// and kill the child process if the `Child` wrapper is dropped before it /// has exited. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// async fn run_ls() -> std::process::ExitStatus { /// Command::new("ls") /// .spawn() /// .expect("ls command failed to start") /// .await /// .expect("ls command failed to run") /// } /// ``` pub fn spawn(&mut self) -> io::Result<Child> { imp::spawn_child(&mut self.std).map(|spawned_child| Child { child: ChildDropGuard { inner: spawned_child.child, kill_on_drop: self.kill_on_drop, }, stdin: spawned_child.stdin.map(|inner| ChildStdin { inner }), stdout: spawned_child.stdout.map(|inner| ChildStdout { inner }), stderr: spawned_child.stderr.map(|inner| ChildStderr { inner }), }) } /// Executes the command as a child process, waiting for it to finish and /// collecting its exit status. /// /// By default, stdin, stdout and stderr are inherited from the parent. /// If any input/output handles are set to a pipe then they will be immediately /// closed after the child is spawned. /// /// All I/O this child does will be associated with the current default /// event loop. /// /// If this future is dropped before the future resolves, then /// the child will be killed, if it was spawned. /// /// # Errors /// /// This future will return an error if the child process cannot be spawned /// or if there is an error while awaiting its status. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// async fn run_ls() -> std::process::ExitStatus { /// Command::new("ls") /// .status() /// .await /// .expect("ls command failed to run") /// } pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> { let child = self.spawn(); async { let mut child = child?; // Ensure we close any stdio handles so we can't deadlock // waiting on the child which may be waiting to read/write // to a pipe we're holding. child.stdin.take(); child.stdout.take(); child.stderr.take(); child.await } } /// Executes the command as a child process, waiting for it to finish and /// collecting all of its output. /// /// > **Note**: this method, unlike the standard library, will /// > unconditionally configure the stdout/stderr handles to be pipes, even /// > if they have been previously configured. If this is not desired then /// > the `spawn` method should be used in combination with the /// > `wait_with_output` method on child. /// /// This method will return a future representing the collection of the /// child process's stdout/stderr. It will resolve to /// the `Output` type in the standard library, containing `stdout` and /// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the /// process exited. /// /// All I/O this child does will be associated with the current default /// event loop. /// /// If this future is dropped before the future resolves, then /// the child will be killed, if it was spawned. /// /// # Examples /// /// Basic usage: /// /// ```no_run /// use tokio::process::Command; /// /// async fn run_ls() { /// let output: std::process::Output = Command::new("ls") /// .output() /// .await /// .expect("ls command failed to run"); /// println!("stderr of ls: {:?}", output.stderr); /// } pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> { self.std.stdout(Stdio::piped()); self.std.stderr(Stdio::piped()); let child = self.spawn(); async { child?.wait_with_output().await } } } impl From<StdCommand> for Command { fn from(std: StdCommand) -> Command { Command { std, kill_on_drop: false, } } } /// A drop guard which can ensure the child process is killed on drop if specified. #[derive(Debug)] struct ChildDropGuard<T: Kill> { inner: T, kill_on_drop: bool, } impl<T: Kill> Kill for ChildDropGuard<T> { fn kill(&mut self) -> io::Result<()> { let ret = self.inner.kill(); if ret.is_ok() { self.kill_on_drop = false; } ret } } impl<T: Kill> Drop for ChildDropGuard<T> { fn drop(&mut self) { if self.kill_on_drop { drop(self.kill()); } } } impl<T, E, F> Future for ChildDropGuard<F> where F: Future<Output = Result<T, E>> + Kill + Unpin, { type Output = Result<T, E>; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { // Keep track of task budget let coop = ready!(crate::coop::poll_proceed(cx)); let ret = Pin::new(&mut self.inner).poll(cx); if let Poll::Ready(Ok(_)) = ret { // Avoid the overhead of trying to kill a reaped process self.kill_on_drop = false; } if ret.is_ready() { coop.made_progress(); } ret } } /// Representation of a child process spawned onto an event loop. /// /// This type is also a future which will yield the `ExitStatus` of the /// underlying child process. A `Child` here also provides access to information /// like the OS-assigned identifier and the stdio streams. /// /// # Caveats /// Similar to the behavior to the standard library, and unlike the futures /// paradigm of dropping-implies-cancellation, a spawned process will, by /// default, continue to execute even after the `Child` handle has been dropped. /// /// The `Command::kill_on_drop` method can be used to modify this behavior /// and kill the child process if the `Child` wrapper is dropped before it /// has exited. #[must_use = "futures do nothing unless polled"] #[derive(Debug)] pub struct Child { child: ChildDropGuard<imp::Child>, /// The handle for writing to the child's standard input (stdin), if it has /// been captured. pub stdin: Option<ChildStdin>, /// The handle for reading from the child's standard output (stdout), if it /// has been captured. pub stdout: Option<ChildStdout>, /// The handle for reading from the child's standard error (stderr), if it /// has been captured. pub stderr: Option<ChildStderr>, } impl Child { /// Returns the OS-assigned process identifier associated with this child. pub fn id(&self) -> u32 { self.child.inner.id() } /// Forces the child to exit. /// /// This is equivalent to sending a SIGKILL on unix platforms. /// /// If the child has to be killed remotely, it is possible to do it using /// a combination of the select! macro and a oneshot channel. In the following /// example, the child will run until completion unless a message is sent on /// the oneshot channel. If that happens, the child is killed immediately /// using the `.kill()` method. /// /// ```no_run /// use tokio::process::Command; /// use tokio::sync::oneshot::channel; /// /// #[tokio::main] /// async fn main() { /// let (send, recv) = channel::<()>(); /// let mut child = Command::new("sleep").arg("1").spawn().unwrap(); /// tokio::spawn(async move { send.send(()) }); /// tokio::select! { /// _ = &mut child => {} /// _ = recv => { /// &mut child.kill(); /// // NB: await the child here to avoid a zombie process on Unix platforms /// child.await.unwrap(); /// } /// } /// } pub fn kill(&mut self) -> io::Result<()> { self.child.kill() } #[doc(hidden)] #[deprecated(note = "please use `child.stdin` instead")] pub fn stdin(&mut self) -> &mut Option<ChildStdin> { &mut self.stdin } #[doc(hidden)] #[deprecated(note = "please use `child.stdout` instead")] pub fn stdout(&mut self) -> &mut Option<ChildStdout> { &mut self.stdout } #[doc(hidden)] #[deprecated(note = "please use `child.stderr` instead")] pub fn stderr(&mut self) -> &mut Option<ChildStderr> { &mut self.stderr } /// Returns a future that will resolve to an `Output`, containing the exit /// status, stdout, and stderr of the child process. /// /// The returned future will simultaneously waits for the child to exit and /// collect all remaining output on the stdout/stderr handles, returning an /// `Output` instance. /// /// The stdin handle to the child process, if any, will be closed before /// waiting. This helps avoid deadlock: it ensures that the child does not /// block waiting for input from the parent, while the parent waits for the /// child to exit. /// /// By default, stdin, stdout and stderr are inherited from the parent. In /// order to capture the output into this `Output` it is necessary to create /// new pipes between parent and child. Use `stdout(Stdio::piped())` or /// `stderr(Stdio::piped())`, respectively, when creating a `Command`. pub async fn wait_with_output(mut self) -> io::Result<Output> { use crate::future::try_join3; async fn read_to_end<A: AsyncRead + Unpin>(io: Option<A>) -> io::Result<Vec<u8>> { let mut vec = Vec::new(); if let Some(mut io) = io { crate::io::util::read_to_end(&mut io, &mut vec).await?; } Ok(vec) } drop(self.stdin.take()); let stdout_fut = read_to_end(self.stdout.take()); let stderr_fut = read_to_end(self.stderr.take()); let (status, stdout, stderr) = try_join3(self, stdout_fut, stderr_fut).await?; Ok(Output { status, stdout, stderr, }) } } impl Future for Child { type Output = io::Result<ExitStatus>; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { Pin::new(&mut self.child).poll(cx) } } /// The standard input stream for spawned children. /// /// This type implements the `AsyncWrite` trait to pass data to the stdin handle of /// handle of a child process asynchronously. #[derive(Debug)] pub struct ChildStdin { inner: imp::ChildStdin, } /// The standard output stream for spawned children. /// /// This type implements the `AsyncRead` trait to read data from the stdout /// handle of a child process asynchronously. #[derive(Debug)] pub struct ChildStdout { inner: imp::ChildStdout, } /// The standard error stream for spawned children. /// /// This type implements the `AsyncRead` trait to read data from the stderr /// handle of a child process asynchronously. #[derive(Debug)] pub struct ChildStderr { inner: imp::ChildStderr, } impl AsyncWrite for ChildStdin { fn poll_write( mut self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8], ) -> Poll<io::Result<usize>> { Pin::new(&mut self.inner).poll_write(cx, buf) } fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { Pin::new(&mut self.inner).poll_flush(cx) } fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { Pin::new(&mut self.inner).poll_shutdown(cx) } } impl AsyncRead for ChildStdout { unsafe fn prepare_uninitialized_buffer(&self, _buf: &mut [std::mem::MaybeUninit<u8>]) -> bool { // https://github.com/rust-lang/rust/blob/09c817eeb29e764cfc12d0a8d94841e3ffe34023/src/libstd/process.rs#L314 false } fn poll_read( mut self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &mut [u8], ) -> Poll<io::Result<usize>> { Pin::new(&mut self.inner).poll_read(cx, buf) } } impl AsyncRead for ChildStderr { unsafe fn prepare_uninitialized_buffer(&self, _buf: &mut [std::mem::MaybeUninit<u8>]) -> bool { // https://github.com/rust-lang/rust/blob/09c817eeb29e764cfc12d0a8d94841e3ffe34023/src/libstd/process.rs#L375 false } fn poll_read( mut self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &mut [u8], ) -> Poll<io::Result<usize>> { Pin::new(&mut self.inner).poll_read(cx, buf) } } #[cfg(unix)] mod sys { use std::os::unix::io::{AsRawFd, RawFd}; use super::{ChildStderr, ChildStdin, ChildStdout}; impl AsRawFd for ChildStdin { fn as_raw_fd(&self) -> RawFd { self.inner.get_ref().as_raw_fd() } } impl AsRawFd for ChildStdout { fn as_raw_fd(&self) -> RawFd { self.inner.get_ref().as_raw_fd() } } impl AsRawFd for ChildStderr { fn as_raw_fd(&self) -> RawFd { self.inner.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { use std::os::windows::io::{AsRawHandle, RawHandle}; use super::{ChildStderr, ChildStdin, ChildStdout}; impl AsRawHandle for ChildStdin { fn as_raw_handle(&self) -> RawHandle { self.inner.get_ref().as_raw_handle() } } impl AsRawHandle for ChildStdout { fn as_raw_handle(&self) -> RawHandle { self.inner.get_ref().as_raw_handle() } } impl AsRawHandle for ChildStderr { fn as_raw_handle(&self) -> RawHandle { self.inner.get_ref().as_raw_handle() } } } #[cfg(all(test, not(loom)))] mod test { use super::kill::Kill; use super::ChildDropGuard; use futures::future::FutureExt; use std::future::Future; use std::io; use std::pin::Pin; use std::task::{Context, Poll}; struct Mock { num_kills: usize, num_polls: usize, poll_result: Poll<Result<(), ()>>, } impl Mock { fn new() -> Self { Self::with_result(Poll::Pending) } fn with_result(result: Poll<Result<(), ()>>) -> Self { Self { num_kills: 0, num_polls: 0, poll_result: result, } } } impl Kill for Mock { fn kill(&mut self) -> io::Result<()> { self.num_kills += 1; Ok(()) } } impl Future for Mock { type Output = Result<(), ()>; fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> { let inner = Pin::get_mut(self); inner.num_polls += 1; inner.poll_result } } #[test] fn kills_on_drop_if_specified() { let mut mock = Mock::new(); { let guard = ChildDropGuard { inner: &mut mock, kill_on_drop: true, }; drop(guard); } assert_eq!(1, mock.num_kills); assert_eq!(0, mock.num_polls); } #[test] fn no_kill_on_drop_by_default() { let mut mock = Mock::new(); { let guard = ChildDropGuard { inner: &mut mock, kill_on_drop: false, }; drop(guard); } assert_eq!(0, mock.num_kills); assert_eq!(0, mock.num_polls); } #[test] fn no_kill_if_already_killed() { let mut mock = Mock::new(); { let mut guard = ChildDropGuard { inner: &mut mock, kill_on_drop: true, }; let _ = guard.kill(); drop(guard); } assert_eq!(1, mock.num_kills); assert_eq!(0, mock.num_polls); } #[test] fn no_kill_if_reaped() { let mut mock_pending = Mock::with_result(Poll::Pending); let mut mock_reaped = Mock::with_result(Poll::Ready(Ok(()))); let mut mock_err = Mock::with_result(Poll::Ready(Err(()))); let waker = futures::task::noop_waker(); let mut context = Context::from_waker(&waker); { let mut guard = ChildDropGuard { inner: &mut mock_pending, kill_on_drop: true, }; let _ = guard.poll_unpin(&mut context); let mut guard = ChildDropGuard { inner: &mut mock_reaped, kill_on_drop: true, }; let _ = guard.poll_unpin(&mut context); let mut guard = ChildDropGuard { inner: &mut mock_err, kill_on_drop: true, }; let _ = guard.poll_unpin(&mut context); } assert_eq!(1, mock_pending.num_kills); assert_eq!(1, mock_pending.num_polls); assert_eq!(0, mock_reaped.num_kills); assert_eq!(1, mock_reaped.num_polls); assert_eq!(1, mock_err.num_kills); assert_eq!(1, mock_err.num_polls); } }