Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//! The Tokio runtime.
//!
//! Unlike other Rust programs, asynchronous applications require
//! runtime support. In particular, the following runtime services are
//! necessary:
//!
//! * An **I/O event loop**, called the driver, which drives I/O resources and
//!   dispatches I/O events to tasks that depend on them.
//! * A **scheduler** to execute [tasks] that use these I/O resources.
//! * A **timer** for scheduling work to run after a set period of time.
//!
//! Tokio's [`Runtime`] bundles all of these services as a single type, allowing
//! them to be started, shut down, and configured together. However, most
//! applications won't need to use [`Runtime`] directly. Instead, they can
//! use the [`tokio::main`] attribute macro, which creates a [`Runtime`] under
//! the hood.
//!
//! # Usage
//!
//! Most applications will use the [`tokio::main`] attribute macro.
//!
//! ```no_run
//! use tokio::net::TcpListener;
//! use tokio::prelude::*;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     let mut listener = TcpListener::bind("127.0.0.1:8080").await?;
//!
//!     loop {
//!         let (mut socket, _) = listener.accept().await?;
//!
//!         tokio::spawn(async move {
//!             let mut buf = [0; 1024];
//!
//!             // In a loop, read data from the socket and write the data back.
//!             loop {
//!                 let n = match socket.read(&mut buf).await {
//!                     // socket closed
//!                     Ok(n) if n == 0 => return,
//!                     Ok(n) => n,
//!                     Err(e) => {
//!                         println!("failed to read from socket; err = {:?}", e);
//!                         return;
//!                     }
//!                 };
//!
//!                 // Write the data back
//!                 if let Err(e) = socket.write_all(&buf[0..n]).await {
//!                     println!("failed to write to socket; err = {:?}", e);
//!                     return;
//!                 }
//!             }
//!         });
//!     }
//! }
//! ```
//!
//! From within the context of the runtime, additional tasks are spawned using
//! the [`tokio::spawn`] function. Futures spawned using this function will be
//! executed on the same thread pool used by the [`Runtime`].
//!
//! A [`Runtime`] instance can also be used directly.
//!
//! ```no_run
//! use tokio::net::TcpListener;
//! use tokio::prelude::*;
//! use tokio::runtime::Runtime;
//!
//! fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     // Create the runtime
//!     let mut rt = Runtime::new()?;
//!
//!     // Spawn the root task
//!     rt.block_on(async {
//!         let mut listener = TcpListener::bind("127.0.0.1:8080").await?;
//!
//!         loop {
//!             let (mut socket, _) = listener.accept().await?;
//!
//!             tokio::spawn(async move {
//!                 let mut buf = [0; 1024];
//!
//!                 // In a loop, read data from the socket and write the data back.
//!                 loop {
//!                     let n = match socket.read(&mut buf).await {
//!                         // socket closed
//!                         Ok(n) if n == 0 => return,
//!                         Ok(n) => n,
//!                         Err(e) => {
//!                             println!("failed to read from socket; err = {:?}", e);
//!                             return;
//!                         }
//!                     };
//!
//!                     // Write the data back
//!                     if let Err(e) = socket.write_all(&buf[0..n]).await {
//!                         println!("failed to write to socket; err = {:?}", e);
//!                         return;
//!                     }
//!                 }
//!             });
//!         }
//!     })
//! }
//! ```
//!
//! ## Runtime Configurations
//!
//! Tokio provides multiple task scheduling strategies, suitable for different
//! applications. The [runtime builder] or `#[tokio::main]` attribute may be
//! used to select which scheduler to use.
//!
//! #### Basic Scheduler
//!
//! The basic scheduler provides a _single-threaded_ future executor. All tasks
//! will be created and executed on the current thread. The basic scheduler
//! requires the `rt-core` feature flag, and can be selected using the
//! [`Builder::basic_scheduler`] method:
//! ```
//! use tokio::runtime;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let basic_rt = runtime::Builder::new()
//!     .basic_scheduler()
//!     .build()?;
//! # Ok(()) }
//! ```
//!
//! If the `rt-core` feature is enabled and `rt-threaded` is not,
//! [`Runtime::new`] will return a basic scheduler runtime by default.
//!
//! #### Threaded Scheduler
//!
//! The threaded scheduler executes futures on a _thread pool_, using a
//! work-stealing strategy. By default, it will start a worker thread for each
//! CPU core available on the system. This tends to be the ideal configurations
//! for most applications. The threaded scheduler requires the `rt-threaded` feature
//! flag, and can be selected using the  [`Builder::threaded_scheduler`] method:
//! ```
//! use tokio::runtime;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let threaded_rt = runtime::Builder::new()
//!     .threaded_scheduler()
//!     .build()?;
//! # Ok(()) }
//! ```
//!
//! If the `rt-threaded` feature flag is enabled, [`Runtime::new`] will return a
//! threaded scheduler runtime by default.
//!
//! Most applications should use the threaded scheduler, except in some niche
//! use-cases, such as when running only a single thread is required.
//!
//! #### Resource drivers
//!
//! When configuring a runtime by hand, no resource drivers are enabled by
//! default. In this case, attempting to use networking types or time types will
//! fail. In order to enable these types, the resource drivers must be enabled.
//! This is done with [`Builder::enable_io`] and [`Builder::enable_time`]. As a
//! shorthand, [`Builder::enable_all`] enables both resource drivers.
//!
//! ## Lifetime of spawned threads
//!
//! The runtime may spawn threads depending on its configuration and usage. The
//! threaded scheduler spawns threads to schedule tasks and calls to
//! `spawn_blocking` spawn threads to run blocking operations.
//!
//! While the `Runtime` is active, threads may shutdown after periods of being
//! idle. Once `Runtime` is dropped, all runtime threads are forcibly shutdown.
//! Any tasks that have not yet completed will be dropped.
//!
//! [tasks]: crate::task
//! [`Runtime`]: Runtime
//! [`tokio::spawn`]: crate::spawn
//! [`tokio::main`]: ../attr.main.html
//! [runtime builder]: crate::runtime::Builder
//! [`Runtime::new`]: crate::runtime::Runtime::new
//! [`Builder::basic_scheduler`]: crate::runtime::Builder::basic_scheduler
//! [`Builder::threaded_scheduler`]: crate::runtime::Builder::threaded_scheduler
//! [`Builder::enable_io`]: crate::runtime::Builder::enable_io
//! [`Builder::enable_time`]: crate::runtime::Builder::enable_time
//! [`Builder::enable_all`]: crate::runtime::Builder::enable_all

// At the top due to macros
#[cfg(test)]
#[macro_use]
mod tests;

pub(crate) mod context;

cfg_rt_core! {
    mod basic_scheduler;
    use basic_scheduler::BasicScheduler;

    pub(crate) mod task;
}

mod blocking;
use blocking::BlockingPool;

cfg_blocking_impl! {
    #[allow(unused_imports)]
    pub(crate) use blocking::{spawn_blocking, try_spawn_blocking};
}

mod builder;
pub use self::builder::Builder;

pub(crate) mod enter;
use self::enter::enter;

mod handle;
pub use self::handle::{Handle, TryCurrentError};

mod io;

cfg_rt_threaded! {
    mod park;
    use park::Parker;
}

mod shell;
use self::shell::Shell;

mod spawner;
use self::spawner::Spawner;

mod time;

cfg_rt_threaded! {
    mod queue;

    pub(crate) mod thread_pool;
    use self::thread_pool::ThreadPool;
}

cfg_rt_core! {
    use crate::task::JoinHandle;
}

use std::future::Future;
use std::time::Duration;

/// The Tokio runtime.
///
/// The runtime provides an I/O driver, task scheduler, [timer], and blocking
/// pool, necessary for running asynchronous tasks.
///
/// Instances of `Runtime` can be created using [`new`] or [`Builder`]. However,
/// most users will use the `#[tokio::main]` annotation on their entry point instead.
///
/// See [module level][mod] documentation for more details.
///
/// # Shutdown
///
/// Shutting down the runtime is done by dropping the value. The current thread
/// will block until the shut down operation has completed.
///
/// * Drain any scheduled work queues.
/// * Drop any futures that have not yet completed.
/// * Drop the reactor.
///
/// Once the reactor has dropped, any outstanding I/O resources bound to
/// that reactor will no longer function. Calling any method on them will
/// result in an error.
///
/// [timer]: crate::time
/// [mod]: index.html
/// [`new`]: method@Self::new
/// [`Builder`]: struct@Builder
/// [`tokio::run`]: fn@run
#[derive(Debug)]
pub struct Runtime {
    /// Task executor
    kind: Kind,

    /// Handle to runtime, also contains driver handles
    handle: Handle,

    /// Blocking pool handle, used to signal shutdown
    blocking_pool: BlockingPool,
}

/// The runtime executor is either a thread-pool or a current-thread executor.
#[derive(Debug)]
enum Kind {
    /// Not able to execute concurrent tasks. This variant is mostly used to get
    /// access to the driver handles.
    Shell(Shell),

    /// Execute all tasks on the current-thread.
    #[cfg(feature = "rt-core")]
    Basic(BasicScheduler<time::Driver>),

    /// Execute tasks across multiple threads.
    #[cfg(feature = "rt-threaded")]
    ThreadPool(ThreadPool),
}

/// After thread starts / before thread stops
type Callback = std::sync::Arc<dyn Fn() + Send + Sync>;

impl Runtime {
    /// Create a new runtime instance with default configuration values.
    ///
    /// This results in a scheduler, I/O driver, and time driver being
    /// initialized. The type of scheduler used depends on what feature flags
    /// are enabled: if the `rt-threaded` feature is enabled, the [threaded
    /// scheduler] is used, while if only the `rt-core` feature is enabled, the
    /// [basic scheduler] is used instead.
    ///
    /// If the threaded scheduler is selected, it will not spawn
    /// any worker threads until it needs to, i.e. tasks are scheduled to run.
    ///
    /// Most applications will not need to call this function directly. Instead,
    /// they will use the  [`#[tokio::main]` attribute][main]. When more complex
    /// configuration is necessary, the [runtime builder] may be used.
    ///
    /// See [module level][mod] documentation for more details.
    ///
    /// # Examples
    ///
    /// Creating a new `Runtime` with default configuration values.
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// let rt = Runtime::new()
    ///     .unwrap();
    ///
    /// // Use the runtime...
    /// ```
    ///
    /// [mod]: index.html
    /// [main]: ../attr.main.html
    /// [threaded scheduler]: index.html#threaded-scheduler
    /// [basic scheduler]: index.html#basic-scheduler
    /// [runtime builder]: crate::runtime::Builder
    pub fn new() -> io::Result<Runtime> {
        #[cfg(feature = "rt-threaded")]
        let ret = Builder::new().threaded_scheduler().enable_all().build();

        #[cfg(all(not(feature = "rt-threaded"), feature = "rt-core"))]
        let ret = Builder::new().basic_scheduler().enable_all().build();

        #[cfg(not(feature = "rt-core"))]
        let ret = Builder::new().enable_all().build();

        ret
    }

    /// Spawn a future onto the Tokio runtime.
    ///
    /// This spawns the given future onto the runtime's executor, usually a
    /// thread pool. The thread pool is then responsible for polling the future
    /// until it completes.
    ///
    /// See [module level][mod] documentation for more details.
    ///
    /// [mod]: index.html
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// # fn dox() {
    /// // Create the runtime
    /// let rt = Runtime::new().unwrap();
    ///
    /// // Spawn a future onto the runtime
    /// rt.spawn(async {
    ///     println!("now running on a worker thread");
    /// });
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// This function will not panic unless task execution is disabled on the
    /// executor. This can only happen if the runtime was built using
    /// [`Builder`] without picking either [`basic_scheduler`] or
    /// [`threaded_scheduler`].
    ///
    /// [`Builder`]: struct@Builder
    /// [`threaded_scheduler`]: fn@Builder::threaded_scheduler
    /// [`basic_scheduler`]: fn@Builder::basic_scheduler
    #[cfg(feature = "rt-core")]
    pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        match &self.kind {
            Kind::Shell(_) => panic!("task execution disabled"),
            #[cfg(feature = "rt-threaded")]
            Kind::ThreadPool(exec) => exec.spawn(future),
            Kind::Basic(exec) => exec.spawn(future),
        }
    }

    /// Run a future to completion on the Tokio runtime. This is the runtime's
    /// entry point.
    ///
    /// This runs the given future on the runtime, blocking until it is
    /// complete, and yielding its resolved result. Any tasks or timers which
    /// the future spawns internally will be executed on the runtime.
    ///
    /// `&mut` is required as calling `block_on` **may** result in advancing the
    /// state of the runtime. The details depend on how the runtime is
    /// configured. [`runtime::Handle::block_on`][handle] provides a version
    /// that takes `&self`.
    ///
    /// This method may not be called from an asynchronous context.
    ///
    /// # Panics
    ///
    /// This function panics if the provided future panics, or if called within an
    /// asynchronous execution context.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::runtime::Runtime;
    ///
    /// // Create the runtime
    /// let mut rt = Runtime::new().unwrap();
    ///
    /// // Execute the future, blocking the current thread until completion
    /// rt.block_on(async {
    ///     println!("hello");
    /// });
    /// ```
    ///
    /// [handle]: fn@Handle::block_on
    pub fn block_on<F: Future>(&mut self, future: F) -> F::Output {
        let kind = &mut self.kind;

        self.handle.enter(|| match kind {
            Kind::Shell(exec) => exec.block_on(future),
            #[cfg(feature = "rt-core")]
            Kind::Basic(exec) => exec.block_on(future),
            #[cfg(feature = "rt-threaded")]
            Kind::ThreadPool(exec) => exec.block_on(future),
        })
    }

    /// Enter the runtime context. This allows you to construct types that must
    /// have an executor available on creation such as [`Delay`] or [`TcpStream`].
    /// It will also allow you to call methods such as [`tokio::spawn`].
    ///
    /// This function is also available as [`Handle::enter`].
    ///
    /// [`Delay`]: struct@crate::time::Delay
    /// [`TcpStream`]: struct@crate::net::TcpStream
    /// [`Handle::enter`]: fn@crate::runtime::Handle::enter
    /// [`tokio::spawn`]: fn@crate::spawn
    ///
    /// # Example
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// fn function_that_spawns(msg: String) {
    ///     // Had we not used `rt.enter` below, this would panic.
    ///     tokio::spawn(async move {
    ///         println!("{}", msg);
    ///     });
    /// }
    ///
    /// fn main() {
    ///     let rt = Runtime::new().unwrap();
    ///
    ///     let s = "Hello World!".to_string();
    ///
    ///     // By entering the context, we tie `tokio::spawn` to this executor.
    ///     rt.enter(|| function_that_spawns(s));
    /// }
    /// ```
    pub fn enter<F, R>(&self, f: F) -> R
    where
        F: FnOnce() -> R,
    {
        self.handle.enter(f)
    }

    /// Return a handle to the runtime's spawner.
    ///
    /// The returned handle can be used to spawn tasks that run on this runtime, and can
    /// be cloned to allow moving the `Handle` to other threads.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// let rt = Runtime::new()
    ///     .unwrap();
    ///
    /// let handle = rt.handle();
    ///
    /// handle.spawn(async { println!("hello"); });
    /// ```
    pub fn handle(&self) -> &Handle {
        &self.handle
    }

    /// Shutdown the runtime, waiting for at most `duration` for all spawned
    /// task to shutdown.
    ///
    /// Usually, dropping a `Runtime` handle is sufficient as tasks are able to
    /// shutdown in a timely fashion. However, dropping a `Runtime` will wait
    /// indefinitely for all tasks to terminate, and there are cases where a long
    /// blocking task has been spawned, which can block dropping `Runtime`.
    ///
    /// In this case, calling `shutdown_timeout` with an explicit wait timeout
    /// can work. The `shutdown_timeout` will signal all tasks to shutdown and
    /// will wait for at most `duration` for all spawned tasks to terminate. If
    /// `timeout` elapses before all tasks are dropped, the function returns and
    /// outstanding tasks are potentially leaked.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    /// use tokio::task;
    ///
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// fn main() {
    ///    let mut runtime = Runtime::new().unwrap();
    ///
    ///    runtime.block_on(async move {
    ///        task::spawn_blocking(move || {
    ///            thread::sleep(Duration::from_secs(10_000));
    ///        });
    ///    });
    ///
    ///    runtime.shutdown_timeout(Duration::from_millis(100));
    /// }
    /// ```
    pub fn shutdown_timeout(mut self, duration: Duration) {
        // Wakeup and shutdown all the worker threads
        self.handle.spawner.shutdown();
        self.blocking_pool.shutdown(Some(duration));
    }

    /// Shutdown the runtime, without waiting for any spawned tasks to shutdown.
    ///
    /// This can be useful if you want to drop a runtime from within another runtime.
    /// Normally, dropping a runtime will block indefinitely for spawned blocking tasks
    /// to complete, which would normally not be permitted within an asynchronous context.
    /// By calling `shutdown_background()`, you can drop the runtime from such a context.
    ///
    /// Note however, that because we do not wait for any blocking tasks to complete, this
    /// may result in a resource leak (in that any blocking tasks are still running until they
    /// return.
    ///
    /// This function is equivalent to calling `shutdown_timeout(Duration::of_nanos(0))`.
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// fn main() {
    ///    let mut runtime = Runtime::new().unwrap();
    ///
    ///    runtime.block_on(async move {
    ///        let inner_runtime = Runtime::new().unwrap();
    ///        // ...
    ///        inner_runtime.shutdown_background();
    ///    });
    /// }
    /// ```
    pub fn shutdown_background(self) {
        self.shutdown_timeout(Duration::from_nanos(0))
    }
}