Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
//! Run-queue structures to support a work-stealing scheduler

use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::{AtomicU16, AtomicU32, AtomicUsize};
use crate::loom::sync::{Arc, Mutex};
use crate::runtime::task;

use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ptr::{self, NonNull};
use std::sync::atomic::Ordering::{AcqRel, Acquire, Release};

/// Producer handle. May only be used from a single thread.
pub(super) struct Local<T: 'static> {
    inner: Arc<Inner<T>>,
}

/// Consumer handle. May be used from many threads.
pub(super) struct Steal<T: 'static>(Arc<Inner<T>>);

/// Growable, MPMC queue used to inject new tasks into the scheduler and as an
/// overflow queue when the local, fixed-size, array queue overflows.
pub(super) struct Inject<T: 'static> {
    /// Pointers to the head and tail of the queue
    pointers: Mutex<Pointers>,

    /// Number of pending tasks in the queue. This helps prevent unnecessary
    /// locking in the hot path.
    len: AtomicUsize,

    _p: PhantomData<T>,
}

pub(super) struct Inner<T: 'static> {
    /// Concurrently updated by many threads.
    ///
    /// Contains two `u16` values. The LSB byte is the "real" head of the queue.
    /// The `u16` in the MSB is set by a stealer in process of stealing values.
    /// It represents the first value being stolen in the batch. `u16` is used
    /// in order to distinguish between `head == tail` and `head == tail -
    /// capacity`.
    ///
    /// When both `u16` values are the same, there is no active stealer.
    ///
    /// Tracking an in-progress stealer prevents a wrapping scenario.
    head: AtomicU32,

    /// Only updated by producer thread but read by many threads.
    tail: AtomicU16,

    /// Elements
    buffer: Box<[UnsafeCell<MaybeUninit<task::Notified<T>>>]>,
}

struct Pointers {
    /// True if the queue is closed
    is_closed: bool,

    /// Linked-list head
    head: Option<NonNull<task::Header>>,

    /// Linked-list tail
    tail: Option<NonNull<task::Header>>,
}

unsafe impl<T> Send for Inner<T> {}
unsafe impl<T> Sync for Inner<T> {}
unsafe impl<T> Send for Inject<T> {}
unsafe impl<T> Sync for Inject<T> {}

#[cfg(not(loom))]
const LOCAL_QUEUE_CAPACITY: usize = 256;

// Shrink the size of the local queue when using loom. This shouldn't impact
// logic, but allows loom to test more edge cases in a reasonable a mount of
// time.
#[cfg(loom)]
const LOCAL_QUEUE_CAPACITY: usize = 4;

const MASK: usize = LOCAL_QUEUE_CAPACITY - 1;

/// Create a new local run-queue
pub(super) fn local<T: 'static>() -> (Steal<T>, Local<T>) {
    let mut buffer = Vec::with_capacity(LOCAL_QUEUE_CAPACITY);

    for _ in 0..LOCAL_QUEUE_CAPACITY {
        buffer.push(UnsafeCell::new(MaybeUninit::uninit()));
    }

    let inner = Arc::new(Inner {
        head: AtomicU32::new(0),
        tail: AtomicU16::new(0),
        buffer: buffer.into(),
    });

    let local = Local {
        inner: inner.clone(),
    };

    let remote = Steal(inner);

    (remote, local)
}

impl<T> Local<T> {
    /// Returns true if the queue has entries that can be stealed.
    pub(super) fn is_stealable(&self) -> bool {
        !self.inner.is_empty()
    }

    /// Pushes a task to the back of the local queue, skipping the LIFO slot.
    pub(super) fn push_back(&mut self, mut task: task::Notified<T>, inject: &Inject<T>) {
        let tail = loop {
            let head = self.inner.head.load(Acquire);
            let (steal, real) = unpack(head);

            // safety: this is the **only** thread that updates this cell.
            let tail = unsafe { self.inner.tail.unsync_load() };

            if tail.wrapping_sub(steal) < LOCAL_QUEUE_CAPACITY as u16 {
                // There is capacity for the task
                break tail;
            } else if steal != real {
                // Concurrently stealing, this will free up capacity, so
                // only push the new task onto the inject queue
                inject.push(task);
                return;
            } else {
                // Push the current task and half of the queue into the
                // inject queue.
                match self.push_overflow(task, real, tail, inject) {
                    Ok(_) => return,
                    // Lost the race, try again
                    Err(v) => {
                        task = v;
                    }
                }
            }
        };

        // Map the position to a slot index.
        let idx = tail as usize & MASK;

        self.inner.buffer[idx].with_mut(|ptr| {
            // Write the task to the slot
            //
            // Safety: There is only one producer and the above `if`
            // condition ensures we don't touch a cell if there is a
            // value, thus no consumer.
            unsafe {
                ptr::write((*ptr).as_mut_ptr(), task);
            }
        });

        // Make the task available. Synchronizes with a load in
        // `steal_into2`.
        self.inner.tail.store(tail.wrapping_add(1), Release);
    }

    /// Moves a batch of tasks into the inject queue.
    ///
    /// This will temporarily make some of the tasks unavailable to stealers.
    /// Once `push_overflow` is done, a notification is sent out, so if other
    /// workers "missed" some of the tasks during a steal, they will get
    /// another opportunity.
    #[inline(never)]
    fn push_overflow(
        &mut self,
        task: task::Notified<T>,
        head: u16,
        tail: u16,
        inject: &Inject<T>,
    ) -> Result<(), task::Notified<T>> {
        const BATCH_LEN: usize = LOCAL_QUEUE_CAPACITY / 2 + 1;

        let n = (LOCAL_QUEUE_CAPACITY / 2) as u16;
        assert_eq!(
            tail.wrapping_sub(head) as usize,
            LOCAL_QUEUE_CAPACITY,
            "queue is not full; tail = {}; head = {}",
            tail,
            head
        );

        let prev = pack(head, head);

        // Claim a bunch of tasks
        //
        // We are claiming the tasks **before** reading them out of the buffer.
        // This is safe because only the **current** thread is able to push new
        // tasks.
        //
        // There isn't really any need for memory ordering... Relaxed would
        // work. This is because all tasks are pushed into the queue from the
        // current thread (or memory has been acquired if the local queue handle
        // moved).
        let actual = self.inner.head.compare_and_swap(
            prev,
            pack(head.wrapping_add(n), head.wrapping_add(n)),
            Release,
        );

        if actual != prev {
            // We failed to claim the tasks, losing the race. Return out of
            // this function and try the full `push` routine again. The queue
            // may not be full anymore.
            return Err(task);
        }

        // link the tasks
        for i in 0..n {
            let j = i + 1;

            let i_idx = i.wrapping_add(head) as usize & MASK;
            let j_idx = j.wrapping_add(head) as usize & MASK;

            // Get the next pointer
            let next = if j == n {
                // The last task in the local queue being moved
                task.header().into()
            } else {
                // safety: The above CAS prevents a stealer from accessing these
                // tasks and we are the only producer.
                self.inner.buffer[j_idx].with(|ptr| unsafe {
                    let value = (*ptr).as_ptr();
                    (*value).header().into()
                })
            };

            // safety: the above CAS prevents a stealer from accessing these
            // tasks and we are the only producer.
            self.inner.buffer[i_idx].with_mut(|ptr| unsafe {
                let ptr = (*ptr).as_ptr();
                (*ptr).header().queue_next.with_mut(|ptr| *ptr = Some(next));
            });
        }

        // safety: the above CAS prevents a stealer from accessing these tasks
        // and we are the only producer.
        let head = self.inner.buffer[head as usize & MASK]
            .with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });

        // Push the tasks onto the inject queue
        inject.push_batch(head, task, BATCH_LEN);

        Ok(())
    }

    /// Pops a task from the local queue.
    pub(super) fn pop(&mut self) -> Option<task::Notified<T>> {
        let mut head = self.inner.head.load(Acquire);

        let idx = loop {
            let (steal, real) = unpack(head);

            // safety: this is the **only** thread that updates this cell.
            let tail = unsafe { self.inner.tail.unsync_load() };

            if real == tail {
                // queue is empty
                return None;
            }

            let next_real = real.wrapping_add(1);

            // If `steal == real` there are no concurrent stealers. Both `steal`
            // and `real` are updated.
            let next = if steal == real {
                pack(next_real, next_real)
            } else {
                assert_ne!(steal, next_real);
                pack(steal, next_real)
            };

            // Attempt to claim a task.
            let res = self
                .inner
                .head
                .compare_exchange(head, next, AcqRel, Acquire);

            match res {
                Ok(_) => break real as usize & MASK,
                Err(actual) => head = actual,
            }
        };

        Some(self.inner.buffer[idx].with(|ptr| unsafe { ptr::read(ptr).assume_init() }))
    }
}

impl<T> Steal<T> {
    pub(super) fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Steals half the tasks from self and place them into `dst`.
    pub(super) fn steal_into(&self, dst: &mut Local<T>) -> Option<task::Notified<T>> {
        // Safety: the caller is the only thread that mutates `dst.tail` and
        // holds a mutable reference.
        let dst_tail = unsafe { dst.inner.tail.unsync_load() };

        // To the caller, `dst` may **look** empty but still have values
        // contained in the buffer. If another thread is concurrently stealing
        // from `dst` there may not be enough capacity to steal.
        let (steal, _) = unpack(dst.inner.head.load(Acquire));

        if dst_tail.wrapping_sub(steal) > LOCAL_QUEUE_CAPACITY as u16 / 2 {
            // we *could* try to steal less here, but for simplicity, we're just
            // going to abort.
            return None;
        }

        // Steal the tasks into `dst`'s buffer. This does not yet expose the
        // tasks in `dst`.
        let mut n = self.steal_into2(dst, dst_tail);

        if n == 0 {
            // No tasks were stolen
            return None;
        }

        // We are returning a task here
        n -= 1;

        let ret_pos = dst_tail.wrapping_add(n);
        let ret_idx = ret_pos as usize & MASK;

        // safety: the value was written as part of `steal_into2` and not
        // exposed to stealers, so no other thread can access it.
        let ret = dst.inner.buffer[ret_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });

        if n == 0 {
            // The `dst` queue is empty, but a single task was stolen
            return Some(ret);
        }

        // Make the stolen items available to consumers
        dst.inner.tail.store(dst_tail.wrapping_add(n), Release);

        Some(ret)
    }

    // Steal tasks from `self`, placing them into `dst`. Returns the number of
    // tasks that were stolen.
    fn steal_into2(&self, dst: &mut Local<T>, dst_tail: u16) -> u16 {
        let mut prev_packed = self.0.head.load(Acquire);
        let mut next_packed;

        let n = loop {
            let (src_head_steal, src_head_real) = unpack(prev_packed);
            let src_tail = self.0.tail.load(Acquire);

            // If these two do not match, another thread is concurrently
            // stealing from the queue.
            if src_head_steal != src_head_real {
                return 0;
            }

            // Number of available tasks to steal
            let n = src_tail.wrapping_sub(src_head_real);
            let n = n - n / 2;

            if n == 0 {
                // No tasks available to steal
                return 0;
            }

            // Update the real head index to acquire the tasks.
            let steal_to = src_head_real.wrapping_add(n);
            assert_ne!(src_head_steal, steal_to);
            next_packed = pack(src_head_steal, steal_to);

            // Claim all those tasks. This is done by incrementing the "real"
            // head but not the steal. By doing this, no other thread is able to
            // steal from this queue until the current thread completes.
            let res = self
                .0
                .head
                .compare_exchange(prev_packed, next_packed, AcqRel, Acquire);

            match res {
                Ok(_) => break n,
                Err(actual) => prev_packed = actual,
            }
        };

        assert!(n <= LOCAL_QUEUE_CAPACITY as u16 / 2, "actual = {}", n);

        let (first, _) = unpack(next_packed);

        // Take all the tasks
        for i in 0..n {
            // Compute the positions
            let src_pos = first.wrapping_add(i);
            let dst_pos = dst_tail.wrapping_add(i);

            // Map to slots
            let src_idx = src_pos as usize & MASK;
            let dst_idx = dst_pos as usize & MASK;

            // Read the task
            //
            // safety: We acquired the task with the atomic exchange above.
            let task = self.0.buffer[src_idx].with(|ptr| unsafe { ptr::read((*ptr).as_ptr()) });

            // Write the task to the new slot
            //
            // safety: `dst` queue is empty and we are the only producer to
            // this queue.
            dst.inner.buffer[dst_idx]
                .with_mut(|ptr| unsafe { ptr::write((*ptr).as_mut_ptr(), task) });
        }

        let mut prev_packed = next_packed;

        // Update `src_head_steal` to match `src_head_real` signalling that the
        // stealing routine is complete.
        loop {
            let head = unpack(prev_packed).1;
            next_packed = pack(head, head);

            let res = self
                .0
                .head
                .compare_exchange(prev_packed, next_packed, AcqRel, Acquire);

            match res {
                Ok(_) => return n,
                Err(actual) => {
                    let (actual_steal, actual_real) = unpack(actual);

                    assert_ne!(actual_steal, actual_real);

                    prev_packed = actual;
                }
            }
        }
    }
}

impl<T> Clone for Steal<T> {
    fn clone(&self) -> Steal<T> {
        Steal(self.0.clone())
    }
}

impl<T> Drop for Local<T> {
    fn drop(&mut self) {
        if !std::thread::panicking() {
            assert!(self.pop().is_none(), "queue not empty");
        }
    }
}

impl<T> Inner<T> {
    fn is_empty(&self) -> bool {
        let (_, head) = unpack(self.head.load(Acquire));
        let tail = self.tail.load(Acquire);

        head == tail
    }
}

impl<T: 'static> Inject<T> {
    pub(super) fn new() -> Inject<T> {
        Inject {
            pointers: Mutex::new(Pointers {
                is_closed: false,
                head: None,
                tail: None,
            }),
            len: AtomicUsize::new(0),
            _p: PhantomData,
        }
    }

    pub(super) fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Close the injection queue, returns `true` if the queue is open when the
    /// transition is made.
    pub(super) fn close(&self) -> bool {
        let mut p = self.pointers.lock().unwrap();

        if p.is_closed {
            return false;
        }

        p.is_closed = true;
        true
    }

    pub(super) fn is_closed(&self) -> bool {
        self.pointers.lock().unwrap().is_closed
    }

    pub(super) fn len(&self) -> usize {
        self.len.load(Acquire)
    }

    /// Pushes a value into the queue.
    pub(super) fn push(&self, task: task::Notified<T>) {
        // Acquire queue lock
        let mut p = self.pointers.lock().unwrap();

        if p.is_closed {
            // Drop the mutex to avoid a potential deadlock when
            // re-entering.
            drop(p);
            drop(task);
            return;
        }

        // safety: only mutated with the lock held
        let len = unsafe { self.len.unsync_load() };
        let task = task.into_raw();

        // The next pointer should already be null
        debug_assert!(get_next(task).is_none());

        if let Some(tail) = p.tail {
            set_next(tail, Some(task));
        } else {
            p.head = Some(task);
        }

        p.tail = Some(task);

        self.len.store(len + 1, Release);
    }

    pub(super) fn push_batch(
        &self,
        batch_head: task::Notified<T>,
        batch_tail: task::Notified<T>,
        num: usize,
    ) {
        let batch_head = batch_head.into_raw();
        let batch_tail = batch_tail.into_raw();

        debug_assert!(get_next(batch_tail).is_none());

        let mut p = self.pointers.lock().unwrap();

        if let Some(tail) = p.tail {
            set_next(tail, Some(batch_head));
        } else {
            p.head = Some(batch_head);
        }

        p.tail = Some(batch_tail);

        // Increment the count.
        //
        // safety: All updates to the len atomic are guarded by the mutex. As
        // such, a non-atomic load followed by a store is safe.
        let len = unsafe { self.len.unsync_load() };

        self.len.store(len + num, Release);
    }

    pub(super) fn pop(&self) -> Option<task::Notified<T>> {
        // Fast path, if len == 0, then there are no values
        if self.is_empty() {
            return None;
        }

        let mut p = self.pointers.lock().unwrap();

        // It is possible to hit null here if another thread poped the last
        // task between us checking `len` and acquiring the lock.
        let task = p.head?;

        p.head = get_next(task);

        if p.head.is_none() {
            p.tail = None;
        }

        set_next(task, None);

        // Decrement the count.
        //
        // safety: All updates to the len atomic are guarded by the mutex. As
        // such, a non-atomic load followed by a store is safe.
        self.len
            .store(unsafe { self.len.unsync_load() } - 1, Release);

        // safety: a `Notified` is pushed into the queue and now it is popped!
        Some(unsafe { task::Notified::from_raw(task) })
    }
}

impl<T: 'static> Drop for Inject<T> {
    fn drop(&mut self) {
        if !std::thread::panicking() {
            assert!(self.pop().is_none(), "queue not empty");
        }
    }
}

fn get_next(header: NonNull<task::Header>) -> Option<NonNull<task::Header>> {
    unsafe { header.as_ref().queue_next.with(|ptr| *ptr) }
}

fn set_next(header: NonNull<task::Header>, val: Option<NonNull<task::Header>>) {
    unsafe {
        header.as_ref().queue_next.with_mut(|ptr| *ptr = val);
    }
}

/// Split the head value into the real head and the index a stealer is working
/// on.
fn unpack(n: u32) -> (u16, u16) {
    let real = n & u16::max_value() as u32;
    let steal = n >> 16;

    (steal as u16, real as u16)
}

/// Join the two head values
fn pack(steal: u16, real: u16) -> u32 {
    (real as u32) | ((steal as u32) << 16)
}

#[test]
fn test_local_queue_capacity() {
    assert!(LOCAL_QUEUE_CAPACITY - 1 <= u8::max_value() as usize);
}