Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
//! Stream utilities for Tokio.
//!
//! A `Stream` is an asynchronous sequence of values. It can be thought of as an asynchronous version of the standard library's `Iterator` trait.
//!
//! This module provides helpers to work with them.

mod all;
use all::AllFuture;

mod any;
use any::AnyFuture;

mod chain;
use chain::Chain;

mod collect;
use collect::Collect;
pub use collect::FromStream;

mod empty;
pub use empty::{empty, Empty};

mod filter;
use filter::Filter;

mod filter_map;
use filter_map::FilterMap;

mod fold;
use fold::FoldFuture;

mod fuse;
use fuse::Fuse;

mod iter;
pub use iter::{iter, Iter};

mod map;
use map::Map;

mod merge;
use merge::Merge;

mod next;
use next::Next;

mod once;
pub use once::{once, Once};

mod pending;
pub use pending::{pending, Pending};

mod stream_map;
pub use stream_map::StreamMap;

mod skip;
use skip::Skip;

mod skip_while;
use skip_while::SkipWhile;

mod try_next;
use try_next::TryNext;

mod take;
use take::Take;

mod take_while;
use take_while::TakeWhile;

cfg_time! {
    mod timeout;
    use timeout::Timeout;
    use std::time::Duration;
}

pub use futures_core::Stream;

/// An extension trait for `Stream`s that provides a variety of convenient
/// combinator functions.
pub trait StreamExt: Stream {
    /// Consumes and returns the next value in the stream or `None` if the
    /// stream is finished.
    ///
    /// Equivalent to:
    ///
    /// ```ignore
    /// async fn next(&mut self) -> Option<Self::Item>;
    /// ```
    ///
    /// Note that because `next` doesn't take ownership over the stream,
    /// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a
    /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
    /// be done by boxing the stream using [`Box::pin`] or
    /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
    /// crate.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..=3);
    ///
    /// assert_eq!(stream.next().await, Some(1));
    /// assert_eq!(stream.next().await, Some(2));
    /// assert_eq!(stream.next().await, Some(3));
    /// assert_eq!(stream.next().await, None);
    /// # }
    /// ```
    fn next(&mut self) -> Next<'_, Self>
    where
        Self: Unpin,
    {
        Next::new(self)
    }

    /// Consumes and returns the next item in the stream. If an error is
    /// encountered before the next item, the error is returned instead.
    ///
    /// Equivalent to:
    ///
    /// ```ignore
    /// async fn try_next(&mut self) -> Result<Option<T>, E>;
    /// ```
    ///
    /// This is similar to the [`next`](StreamExt::next) combinator,
    /// but returns a [`Result<Option<T>, E>`](Result) rather than
    /// an [`Option<Result<T, E>>`](Option), making for easy use
    /// with the [`?`](std::ops::Try) operator.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(vec![Ok(1), Ok(2), Err("nope")]);
    ///
    /// assert_eq!(stream.try_next().await, Ok(Some(1)));
    /// assert_eq!(stream.try_next().await, Ok(Some(2)));
    /// assert_eq!(stream.try_next().await, Err("nope"));
    /// # }
    /// ```
    fn try_next<T, E>(&mut self) -> TryNext<'_, Self>
    where
        Self: Stream<Item = Result<T, E>> + Unpin,
    {
        TryNext::new(self)
    }

    /// Maps this stream's items to a different type, returning a new stream of
    /// the resulting type.
    ///
    /// The provided closure is executed over all elements of this stream as
    /// they are made available. It is executed inline with calls to
    /// [`poll_next`](Stream::poll_next).
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to the existing `map` methods in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=3);
    /// let mut stream = stream.map(|x| x + 3);
    ///
    /// assert_eq!(stream.next().await, Some(4));
    /// assert_eq!(stream.next().await, Some(5));
    /// assert_eq!(stream.next().await, Some(6));
    /// # }
    /// ```
    fn map<T, F>(self, f: F) -> Map<Self, F>
    where
        F: FnMut(Self::Item) -> T,
        Self: Sized,
    {
        Map::new(self, f)
    }

    /// Combine two streams into one by interleaving the output of both as it
    /// is produced.
    ///
    /// Values are produced from the merged stream in the order they arrive from
    /// the two source streams. If both source streams provide values
    /// simultaneously, the merge stream alternates between them. This provides
    /// some level of fairness. You should not chain calls to `merge`, as this
    /// will break the fairness of the merging.
    ///
    /// The merged stream completes once **both** source streams complete. When
    /// one source stream completes before the other, the merge stream
    /// exclusively polls the remaining stream.
    ///
    /// For merging multiple streams, consider using [`StreamMap`] instead.
    ///
    /// [`StreamMap`]: crate::stream::StreamMap
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::stream::StreamExt;
    /// use tokio::sync::mpsc;
    /// use tokio::time;
    ///
    /// use std::time::Duration;
    ///
    /// # /*
    /// #[tokio::main]
    /// # */
    /// # #[tokio::main(basic_scheduler)]
    /// async fn main() {
    /// # time::pause();
    ///     let (mut tx1, rx1) = mpsc::channel(10);
    ///     let (mut tx2, rx2) = mpsc::channel(10);
    ///
    ///     let mut rx = rx1.merge(rx2);
    ///
    ///     tokio::spawn(async move {
    ///         // Send some values immediately
    ///         tx1.send(1).await.unwrap();
    ///         tx1.send(2).await.unwrap();
    ///
    ///         // Let the other task send values
    ///         time::delay_for(Duration::from_millis(20)).await;
    ///
    ///         tx1.send(4).await.unwrap();
    ///     });
    ///
    ///     tokio::spawn(async move {
    ///         // Wait for the first task to send values
    ///         time::delay_for(Duration::from_millis(5)).await;
    ///
    ///         tx2.send(3).await.unwrap();
    ///
    ///         time::delay_for(Duration::from_millis(25)).await;
    ///
    ///         // Send the final value
    ///         tx2.send(5).await.unwrap();
    ///     });
    ///
    ///    assert_eq!(1, rx.next().await.unwrap());
    ///    assert_eq!(2, rx.next().await.unwrap());
    ///    assert_eq!(3, rx.next().await.unwrap());
    ///    assert_eq!(4, rx.next().await.unwrap());
    ///    assert_eq!(5, rx.next().await.unwrap());
    ///
    ///    // The merged stream is consumed
    ///    assert!(rx.next().await.is_none());
    /// }
    /// ```
    fn merge<U>(self, other: U) -> Merge<Self, U>
    where
        U: Stream<Item = Self::Item>,
        Self: Sized,
    {
        Merge::new(self, other)
    }

    /// Filters the values produced by this stream according to the provided
    /// predicate.
    ///
    /// As values of this stream are made available, the provided predicate `f`
    /// will be run against them. If the predicate
    /// resolves to `true`, then the stream will yield the value, but if the
    /// predicate resolves to `false`, then the value
    /// will be discarded and the next value will be produced.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to [`Iterator::filter`] method in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=8);
    /// let mut evens = stream.filter(|x| x % 2 == 0);
    ///
    /// assert_eq!(Some(2), evens.next().await);
    /// assert_eq!(Some(4), evens.next().await);
    /// assert_eq!(Some(6), evens.next().await);
    /// assert_eq!(Some(8), evens.next().await);
    /// assert_eq!(None, evens.next().await);
    /// # }
    /// ```
    fn filter<F>(self, f: F) -> Filter<Self, F>
    where
        F: FnMut(&Self::Item) -> bool,
        Self: Sized,
    {
        Filter::new(self, f)
    }

    /// Filters the values produced by this stream while simultaneously mapping
    /// them to a different type according to the provided closure.
    ///
    /// As values of this stream are made available, the provided function will
    /// be run on them. If the predicate `f` resolves to
    /// [`Some(item)`](Some) then the stream will yield the value `item`, but if
    /// it resolves to [`None`], then the value will be skipped.
    ///
    /// Note that this function consumes the stream passed into it and returns a
    /// wrapped version of it, similar to [`Iterator::filter_map`] method in the
    /// standard library.
    ///
    /// # Examples
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let stream = stream::iter(1..=8);
    /// let mut evens = stream.filter_map(|x| {
    ///     if x % 2 == 0 { Some(x + 1) } else { None }
    /// });
    ///
    /// assert_eq!(Some(3), evens.next().await);
    /// assert_eq!(Some(5), evens.next().await);
    /// assert_eq!(Some(7), evens.next().await);
    /// assert_eq!(Some(9), evens.next().await);
    /// assert_eq!(None, evens.next().await);
    /// # }
    /// ```
    fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F>
    where
        F: FnMut(Self::Item) -> Option<T>,
        Self: Sized,
    {
        FilterMap::new(self, f)
    }

    /// Creates a stream which ends after the first `None`.
    ///
    /// After a stream returns `None`, behavior is undefined. Future calls to
    /// `poll_next` may or may not return `Some(T)` again or they may panic.
    /// `fuse()` adapts a stream, ensuring that after `None` is given, it will
    /// return `None` forever.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::stream::{Stream, StreamExt};
    ///
    /// use std::pin::Pin;
    /// use std::task::{Context, Poll};
    ///
    /// // a stream which alternates between Some and None
    /// struct Alternate {
    ///     state: i32,
    /// }
    ///
    /// impl Stream for Alternate {
    ///     type Item = i32;
    ///
    ///     fn poll_next(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<i32>> {
    ///         let val = self.state;
    ///         self.state = self.state + 1;
    ///
    ///         // if it's even, Some(i32), else None
    ///         if val % 2 == 0 {
    ///             Poll::Ready(Some(val))
    ///         } else {
    ///             Poll::Ready(None)
    ///         }
    ///     }
    /// }
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mut stream = Alternate { state: 0 };
    ///
    ///     // the stream goes back and forth
    ///     assert_eq!(stream.next().await, Some(0));
    ///     assert_eq!(stream.next().await, None);
    ///     assert_eq!(stream.next().await, Some(2));
    ///     assert_eq!(stream.next().await, None);
    ///
    ///     // however, once it is fused
    ///     let mut stream = stream.fuse();
    ///
    ///     assert_eq!(stream.next().await, Some(4));
    ///     assert_eq!(stream.next().await, None);
    ///
    ///     // it will always return `None` after the first time.
    ///     assert_eq!(stream.next().await, None);
    ///     assert_eq!(stream.next().await, None);
    ///     assert_eq!(stream.next().await, None);
    /// }
    /// ```
    fn fuse(self) -> Fuse<Self>
    where
        Self: Sized,
    {
        Fuse::new(self)
    }

    /// Creates a new stream of at most `n` items of the underlying stream.
    ///
    /// Once `n` items have been yielded from this stream then it will always
    /// return that the stream is done.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..=10).take(3);
    ///
    /// assert_eq!(Some(1), stream.next().await);
    /// assert_eq!(Some(2), stream.next().await);
    /// assert_eq!(Some(3), stream.next().await);
    /// assert_eq!(None, stream.next().await);
    /// # }
    /// ```
    fn take(self, n: usize) -> Take<Self>
    where
        Self: Sized,
    {
        Take::new(self, n)
    }

    /// Take elements from this stream while the provided predicate
    /// resolves to `true`.
    ///
    /// This function, like `Iterator::take_while`, will take elements from the
    /// stream until the predicate `f` resolves to `false`. Once one element
    /// returns false it will always return that the stream is done.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..=10).take_while(|x| *x <= 3);
    ///
    /// assert_eq!(Some(1), stream.next().await);
    /// assert_eq!(Some(2), stream.next().await);
    /// assert_eq!(Some(3), stream.next().await);
    /// assert_eq!(None, stream.next().await);
    /// # }
    /// ```
    fn take_while<F>(self, f: F) -> TakeWhile<Self, F>
    where
        F: FnMut(&Self::Item) -> bool,
        Self: Sized,
    {
        TakeWhile::new(self, f)
    }

    /// Creates a new stream that will skip the `n` first items of the
    /// underlying stream.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let mut stream = stream::iter(1..=10).skip(7);
    ///
    /// assert_eq!(Some(8), stream.next().await);
    /// assert_eq!(Some(9), stream.next().await);
    /// assert_eq!(Some(10), stream.next().await);
    /// assert_eq!(None, stream.next().await);
    /// # }
    /// ```
    fn skip(self, n: usize) -> Skip<Self>
    where
        Self: Sized,
    {
        Skip::new(self, n)
    }

    /// Skip elements from the underlying stream while the provided predicate
    /// resolves to `true`.
    ///
    /// This function, like [`Iterator::skip_while`], will ignore elemets from the
    /// stream until the predicate `f` resolves to `false`. Once one element
    /// returns false, the rest of the elements will be yielded.
    ///
    /// [`Iterator::skip_while`]: std::iter::Iterator::skip_while()
    ///
    /// # Examples
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    /// let mut stream = stream::iter(vec![1,2,3,4,1]).skip_while(|x| *x < 3);
    ///
    /// assert_eq!(Some(3), stream.next().await);
    /// assert_eq!(Some(4), stream.next().await);
    /// assert_eq!(Some(1), stream.next().await);
    /// assert_eq!(None, stream.next().await);
    /// # }
    /// ```
    fn skip_while<F>(self, f: F) -> SkipWhile<Self, F>
    where
        F: FnMut(&Self::Item) -> bool,
        Self: Sized,
    {
        SkipWhile::new(self, f)
    }

    /// Tests if every element of the stream matches a predicate.
    ///
    /// `all()` takes a closure that returns `true` or `false`. It applies
    /// this closure to each element of the stream, and if they all return
    /// `true`, then so does `all`. If any of them return `false`, it
    /// returns `false`. An empty stream returns `true`.
    ///
    /// `all()` is short-circuiting; in other words, it will stop processing
    /// as soon as it finds a `false`, given that no matter what else happens,
    /// the result will also be `false`.
    ///
    /// An empty stream returns `true`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let a = [1, 2, 3];
    ///
    /// assert!(stream::iter(&a).all(|&x| x > 0).await);
    ///
    /// assert!(!stream::iter(&a).all(|&x| x > 2).await);
    /// # }
    /// ```
    ///
    /// Stopping at the first `false`:
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let a = [1, 2, 3];
    ///
    /// let mut iter = stream::iter(&a);
    ///
    /// assert!(!iter.all(|&x| x != 2).await);
    ///
    /// // we can still use `iter`, as there are more elements.
    /// assert_eq!(iter.next().await, Some(&3));
    /// # }
    /// ```
    fn all<F>(&mut self, f: F) -> AllFuture<'_, Self, F>
    where
        Self: Unpin,
        F: FnMut(Self::Item) -> bool,
    {
        AllFuture::new(self, f)
    }

    /// Tests if any element of the stream matches a predicate.
    ///
    /// `any()` takes a closure that returns `true` or `false`. It applies
    /// this closure to each element of the stream, and if any of them return
    /// `true`, then so does `any()`. If they all return `false`, it
    /// returns `false`.
    ///
    /// `any()` is short-circuiting; in other words, it will stop processing
    /// as soon as it finds a `true`, given that no matter what else happens,
    /// the result will also be `true`.
    ///
    /// An empty stream returns `false`.
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let a = [1, 2, 3];
    ///
    /// assert!(stream::iter(&a).any(|&x| x > 0).await);
    ///
    /// assert!(!stream::iter(&a).any(|&x| x > 5).await);
    /// # }
    /// ```
    ///
    /// Stopping at the first `true`:
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    ///
    /// let a = [1, 2, 3];
    ///
    /// let mut iter = stream::iter(&a);
    ///
    /// assert!(iter.any(|&x| x != 2).await);
    ///
    /// // we can still use `iter`, as there are more elements.
    /// assert_eq!(iter.next().await, Some(&2));
    /// # }
    /// ```
    fn any<F>(&mut self, f: F) -> AnyFuture<'_, Self, F>
    where
        Self: Unpin,
        F: FnMut(Self::Item) -> bool,
    {
        AnyFuture::new(self, f)
    }

    /// Combine two streams into one by first returning all values from the
    /// first stream then all values from the second stream.
    ///
    /// As long as `self` still has values to emit, no values from `other` are
    /// emitted, even if some are ready.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::stream::{self, StreamExt};
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let one = stream::iter(vec![1, 2, 3]);
    ///     let two = stream::iter(vec![4, 5, 6]);
    ///
    ///     let mut stream = one.chain(two);
    ///
    ///     assert_eq!(stream.next().await, Some(1));
    ///     assert_eq!(stream.next().await, Some(2));
    ///     assert_eq!(stream.next().await, Some(3));
    ///     assert_eq!(stream.next().await, Some(4));
    ///     assert_eq!(stream.next().await, Some(5));
    ///     assert_eq!(stream.next().await, Some(6));
    ///     assert_eq!(stream.next().await, None);
    /// }
    /// ```
    fn chain<U>(self, other: U) -> Chain<Self, U>
    where
        U: Stream<Item = Self::Item>,
        Self: Sized,
    {
        Chain::new(self, other)
    }

    /// A combinator that applies a function to every element in a stream
    /// producing a single, final value.
    ///
    /// # Examples
    /// Basic usage:
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, *};
    ///
    /// let s = stream::iter(vec![1u8, 2, 3]);
    /// let sum = s.fold(0, |acc, x| acc + x).await;
    ///
    /// assert_eq!(sum, 6);
    /// # }
    /// ```
    fn fold<B, F>(self, init: B, f: F) -> FoldFuture<Self, B, F>
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        FoldFuture::new(self, init, f)
    }

    /// Drain stream pushing all emitted values into a collection.
    ///
    /// `collect` streams all values, awaiting as needed. Values are pushed into
    /// a collection. A number of different target collection types are
    /// supported, including [`Vec`](std::vec::Vec),
    /// [`String`](std::string::String), and [`Bytes`](bytes::Bytes).
    ///
    /// # `Result`
    ///
    /// `collect()` can also be used with streams of type `Result<T, E>` where
    /// `T: FromStream<_>`. In this case, `collect()` will stream as long as
    /// values yielded from the stream are `Ok(_)`. If `Err(_)` is encountered,
    /// streaming is terminated and `collect()` returns the `Err`.
    ///
    /// # Notes
    ///
    /// `FromStream` is currently a sealed trait. Stabilization is pending
    /// enhancements to the Rust language.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use tokio::stream::{self, StreamExt};
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let doubled: Vec<i32> =
    ///         stream::iter(vec![1, 2, 3])
    ///             .map(|x| x * 2)
    ///             .collect()
    ///             .await;
    ///
    ///     assert_eq!(vec![2, 4, 6], doubled);
    /// }
    /// ```
    ///
    /// Collecting a stream of `Result` values
    ///
    /// ```
    /// use tokio::stream::{self, StreamExt};
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     // A stream containing only `Ok` values will be collected
    ///     let values: Result<Vec<i32>, &str> =
    ///         stream::iter(vec![Ok(1), Ok(2), Ok(3)])
    ///             .collect()
    ///             .await;
    ///
    ///     assert_eq!(Ok(vec![1, 2, 3]), values);
    ///
    ///     // A stream containing `Err` values will return the first error.
    ///     let results = vec![Ok(1), Err("no"), Ok(2), Ok(3), Err("nein")];
    ///
    ///     let values: Result<Vec<i32>, &str> =
    ///         stream::iter(results)
    ///             .collect()
    ///             .await;
    ///
    ///     assert_eq!(Err("no"), values);
    /// }
    /// ```
    fn collect<T>(self) -> Collect<Self, T>
    where
        T: FromStream<Self::Item>,
        Self: Sized,
    {
        Collect::new(self)
    }

    /// Applies a per-item timeout to the passed stream.
    ///
    /// `timeout()` takes a `Duration` that represents the maximum amount of
    /// time each element of the stream has to complete before timing out.
    ///
    /// If the wrapped stream yields a value before the deadline is reached, the
    /// value is returned. Otherwise, an error is returned. The caller may decide
    /// to continue consuming the stream and will eventually get the next source
    /// stream value once it becomes available.
    ///
    /// # Notes
    ///
    /// This function consumes the stream passed into it and returns a
    /// wrapped version of it.
    ///
    /// Polling the returned stream will continue to poll the inner stream even
    /// if one or more items time out.
    ///
    /// # Examples
    ///
    /// Suppose we have a stream `int_stream` that yields 3 numbers (1, 2, 3):
    ///
    /// ```
    /// # #[tokio::main]
    /// # async fn main() {
    /// use tokio::stream::{self, StreamExt};
    /// use std::time::Duration;
    /// # let int_stream = stream::iter(1..=3);
    ///
    /// let mut int_stream = int_stream.timeout(Duration::from_secs(1));
    ///
    /// // When no items time out, we get the 3 elements in succession:
    /// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
    /// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
    /// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
    /// assert_eq!(int_stream.try_next().await, Ok(None));
    ///
    /// // If the second item times out, we get an error and continue polling the stream:
    /// # let mut int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
    /// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
    /// assert!(int_stream.try_next().await.is_err());
    /// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
    /// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
    /// assert_eq!(int_stream.try_next().await, Ok(None));
    ///
    /// // If we want to stop consuming the source stream the first time an
    /// // element times out, we can use the `take_while` operator:
    /// # let int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
    /// let mut int_stream = int_stream.take_while(Result::is_ok);
    ///
    /// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
    /// assert_eq!(int_stream.try_next().await, Ok(None));
    /// # }
    /// ```
    #[cfg(all(feature = "time"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "time")))]
    fn timeout(self, duration: Duration) -> Timeout<Self>
    where
        Self: Sized,
    {
        Timeout::new(self, duration)
    }
}

impl<St: ?Sized> StreamExt for St where St: Stream {}

/// Merge the size hints from two streams.
fn merge_size_hints(
    (left_low, left_high): (usize, Option<usize>),
    (right_low, right_hign): (usize, Option<usize>),
) -> (usize, Option<usize>) {
    let low = left_low.saturating_add(right_low);
    let high = match (left_high, right_hign) {
        (Some(h1), Some(h2)) => h1.checked_add(h2),
        _ => None,
    };
    (low, high)
}