1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
mod level;
mod stack;

pub(crate) use self::level::Expiration;
use self::level::Level;
pub(crate) use self::stack::Stack;

use std::borrow::Borrow;
use std::usize;

/// Timing wheel implementation.
///
/// This type provides the hashed timing wheel implementation that backs `Timer`
/// and `DelayQueue`.
///
/// The structure is generic over `T: Stack`. This allows handling timeout data
/// being stored on the heap or in a slab. In order to support the latter case,
/// the slab must be passed into each function allowing the implementation to
/// lookup timer entries.
///
/// See `Timer` documentation for some implementation notes.
#[derive(Debug)]
pub(crate) struct Wheel<T> {
    /// The number of milliseconds elapsed since the wheel started.
    elapsed: u64,

    /// Timer wheel.
    ///
    /// Levels:
    ///
    /// * 1 ms slots / 64 ms range
    /// * 64 ms slots / ~ 4 sec range
    /// * ~ 4 sec slots / ~ 4 min range
    /// * ~ 4 min slots / ~ 4 hr range
    /// * ~ 4 hr slots / ~ 12 day range
    /// * ~ 12 day slots / ~ 2 yr range
    levels: Vec<Level<T>>,
}

/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
/// each, the timer is able to track time up to 2 years into the future with a
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;

/// The maximum duration of a delay
const MAX_DURATION: u64 = 1 << (6 * NUM_LEVELS);

#[derive(Debug)]
pub(crate) enum InsertError {
    Elapsed,
    Invalid,
}

/// Poll expirations from the wheel
#[derive(Debug, Default)]
pub(crate) struct Poll {
    now: u64,
    expiration: Option<Expiration>,
}

impl<T> Wheel<T>
where
    T: Stack,
{
    /// Create a new timing wheel
    pub fn new() -> Wheel<T> {
        let levels = (0..NUM_LEVELS).map(Level::new).collect();

        Wheel { elapsed: 0, levels }
    }

    /// Return the number of milliseconds that have elapsed since the timing
    /// wheel's creation.
    pub fn elapsed(&self) -> u64 {
        self.elapsed
    }

    /// Insert an entry into the timing wheel.
    ///
    /// # Arguments
    ///
    /// * `when`: is the instant at which the entry should be fired. It is
    ///           represented as the number of milliseconds since the creation
    ///           of the timing wheel.
    ///
    /// * `item`: The item to insert into the wheel.
    ///
    /// * `store`: The slab or `()` when using heap storage.
    ///
    /// # Return
    ///
    /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
    ///
    /// `Err(Elapsed)` indicates that `when` represents an instant that has
    /// already passed. In this case, the caller should fire the timeout
    /// immediately.
    ///
    /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
    pub fn insert(
        &mut self,
        when: u64,
        item: T::Owned,
        store: &mut T::Store,
    ) -> Result<(), (T::Owned, InsertError)> {
        if when <= self.elapsed {
            return Err((item, InsertError::Elapsed));
        } else if when - self.elapsed > MAX_DURATION {
            return Err((item, InsertError::Invalid));
        }

        // Get the level at which the entry should be stored
        let level = self.level_for(when);

        self.levels[level].add_entry(when, item, store);

        debug_assert!({
            self.levels[level]
                .next_expiration(self.elapsed)
                .map(|e| e.deadline >= self.elapsed)
                .unwrap_or(true)
        });

        Ok(())
    }

    /// Remove `item` from thee timing wheel.
    pub fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
        let when = T::when(item, store);
        let level = self.level_for(when);

        self.levels[level].remove_entry(when, item, store);
    }

    /// Instant at which to poll
    pub fn poll_at(&self) -> Option<u64> {
        self.next_expiration().map(|expiration| expiration.deadline)
    }

    pub fn poll(&mut self, poll: &mut Poll, store: &mut T::Store) -> Option<T::Owned> {
        loop {
            if poll.expiration.is_none() {
                poll.expiration = self.next_expiration().and_then(|expiration| {
                    if expiration.deadline > poll.now {
                        None
                    } else {
                        Some(expiration)
                    }
                });
            }

            match poll.expiration {
                Some(ref expiration) => {
                    if let Some(item) = self.poll_expiration(expiration, store) {
                        return Some(item);
                    }

                    self.set_elapsed(expiration.deadline);
                }
                None => {
                    self.set_elapsed(poll.now);
                    return None;
                }
            }

            poll.expiration = None;
        }
    }

    /// Returns the instant at which the next timeout expires.
    fn next_expiration(&self) -> Option<Expiration> {
        // Check all levels
        for level in 0..NUM_LEVELS {
            if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
                // There cannot be any expirations at a higher level that happen
                // before this one.
                debug_assert!({
                    let mut res = true;

                    for l2 in (level + 1)..NUM_LEVELS {
                        if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
                            if e2.deadline < expiration.deadline {
                                res = false;
                            }
                        }
                    }

                    res
                });

                return Some(expiration);
            }
        }

        None
    }

    pub fn poll_expiration(
        &mut self,
        expiration: &Expiration,
        store: &mut T::Store,
    ) -> Option<T::Owned> {
        while let Some(item) = self.pop_entry(expiration, store) {
            if expiration.level == 0 {
                debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);

                return Some(item);
            } else {
                let when = T::when(item.borrow(), store);

                let next_level = expiration.level - 1;

                self.levels[next_level].add_entry(when, item, store);
            }
        }

        None
    }

    fn set_elapsed(&mut self, when: u64) {
        assert!(
            self.elapsed <= when,
            "elapsed={:?}; when={:?}",
            self.elapsed,
            when
        );

        if when > self.elapsed {
            self.elapsed = when;
        }
    }

    fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
        self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
    }

    fn level_for(&self, when: u64) -> usize {
        level_for(self.elapsed, when)
    }
}

fn level_for(elapsed: u64, when: u64) -> usize {
    let masked = elapsed ^ when;

    assert!(masked != 0, "elapsed={}; when={}", elapsed, when);

    let leading_zeros = masked.leading_zeros() as usize;
    let significant = 63 - leading_zeros;
    significant / 6
}

impl Poll {
    pub fn new(now: u64) -> Poll {
        Poll {
            now,
            expiration: None,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_level_for() {
        for pos in 1..64 {
            assert_eq!(
                0,
                level_for(0, pos),
                "level_for({}) -- binary = {:b}",
                pos,
                pos
            );
        }

        for level in 1..5 {
            for pos in level..64 {
                let a = pos * 64_usize.pow(level as u32);
                assert_eq!(
                    level,
                    level_for(0, a as u64),
                    "level_for({}) -- binary = {:b}",
                    a,
                    a
                );

                if pos > level {
                    let a = a - 1;
                    assert_eq!(
                        level,
                        level_for(0, a as u64),
                        "level_for({}) -- binary = {:b}",
                        a,
                        a
                    );
                }

                if pos < 64 {
                    let a = a + 1;
                    assert_eq!(
                        level,
                        level_for(0, a as u64),
                        "level_for({}) -- binary = {:b}",
                        a,
                        a
                    );
                }
            }
        }
    }
}