use crate::UnalignedBuffer;
use core::{cmp, hash::Hasher};
#[cfg(feature = "serialize")]
use serde::{Deserialize, Serialize};
const CHUNK_SIZE: usize = 32;
const PRIME_1: u64 = 11_400_714_785_074_694_791;
const PRIME_2: u64 = 14_029_467_366_897_019_727;
const PRIME_3: u64 = 1_609_587_929_392_839_161;
const PRIME_4: u64 = 9_650_029_242_287_828_579;
const PRIME_5: u64 = 2_870_177_450_012_600_261;
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[derive(Copy, Clone, PartialEq)]
struct XxCore {
v1: u64,
v2: u64,
v3: u64,
v4: u64,
}
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct XxHash64 {
total_len: u64,
seed: u64,
core: XxCore,
#[cfg_attr(feature = "serialize", serde(flatten))]
buffer: Buffer,
}
impl XxCore {
fn with_seed(seed: u64) -> XxCore {
XxCore {
v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
v2: seed.wrapping_add(PRIME_2),
v3: seed,
v4: seed.wrapping_sub(PRIME_1),
}
}
#[inline(always)]
fn ingest_chunks<I>(&mut self, values: I)
where
I: IntoIterator<Item = [u64; 4]>,
{
#[inline(always)]
fn ingest_one_number(mut current_value: u64, mut value: u64) -> u64 {
value = value.wrapping_mul(PRIME_2);
current_value = current_value.wrapping_add(value);
current_value = current_value.rotate_left(31);
current_value.wrapping_mul(PRIME_1)
};
let mut v1 = self.v1;
let mut v2 = self.v2;
let mut v3 = self.v3;
let mut v4 = self.v4;
for [n1, n2, n3, n4] in values {
v1 = ingest_one_number(v1, n1);
v2 = ingest_one_number(v2, n2);
v3 = ingest_one_number(v3, n3);
v4 = ingest_one_number(v4, n4);
}
self.v1 = v1;
self.v2 = v2;
self.v3 = v3;
self.v4 = v4;
}
#[inline(always)]
fn finish(&self) -> u64 {
let mut hash;
hash = self.v1.rotate_left(1);
hash = hash.wrapping_add(self.v2.rotate_left(7));
hash = hash.wrapping_add(self.v3.rotate_left(12));
hash = hash.wrapping_add(self.v4.rotate_left(18));
#[inline(always)]
fn mix_one(mut hash: u64, mut value: u64) -> u64 {
value = value.wrapping_mul(PRIME_2);
value = value.rotate_left(31);
value = value.wrapping_mul(PRIME_1);
hash ^= value;
hash = hash.wrapping_mul(PRIME_1);
hash.wrapping_add(PRIME_4)
}
hash = mix_one(hash, self.v1);
hash = mix_one(hash, self.v2);
hash = mix_one(hash, self.v3);
hash = mix_one(hash, self.v4);
hash
}
}
impl core::fmt::Debug for XxCore {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
write!(
f,
"XxCore {{ {:016x} {:016x} {:016x} {:016x} }}",
self.v1, self.v2, self.v3, self.v4
)
}
}
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
#[derive(Debug, Copy, Clone, Default, PartialEq)]
#[repr(align(8))]
#[cfg_attr(feature = "serialize", serde(transparent))]
struct AlignToU64<T>(T);
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
#[derive(Debug, Copy, Clone, Default, PartialEq)]
struct Buffer {
#[cfg_attr(feature = "serialize", serde(rename = "buffer"))]
data: AlignToU64<[u8; CHUNK_SIZE]>,
#[cfg_attr(feature = "serialize", serde(rename = "buffer_usage"))]
len: usize,
}
impl Buffer {
fn data(&self) -> &[u8] {
&self.data.0[..self.len]
}
fn consume<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
let to_use = cmp::min(self.available(), data.len());
let (data, remaining) = data.split_at(to_use);
self.data.0[self.len..][..to_use].copy_from_slice(data);
self.len += to_use;
remaining
}
fn set_data(&mut self, data: &[u8]) {
debug_assert!(self.is_empty());
debug_assert!(data.len() < CHUNK_SIZE);
self.data.0[..data.len()].copy_from_slice(data);
self.len = data.len();
}
fn available(&self) -> usize {
CHUNK_SIZE - self.len
}
fn is_empty(&self) -> bool {
self.len == 0
}
fn is_full(&self) -> bool {
self.len == CHUNK_SIZE
}
}
impl XxHash64 {
pub fn with_seed(seed: u64) -> XxHash64 {
XxHash64 {
total_len: 0,
seed,
core: XxCore::with_seed(seed),
buffer: Buffer::default(),
}
}
pub(crate) fn write(&mut self, bytes: &[u8]) {
let remaining = self.maybe_consume_bytes(bytes);
if !remaining.is_empty() {
let mut remaining = UnalignedBuffer::new(remaining);
self.core.ingest_chunks(&mut remaining);
self.buffer.set_data(remaining.remaining());
}
self.total_len += bytes.len() as u64;
}
fn maybe_consume_bytes<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
if self.buffer.is_empty() {
data
} else {
let data = self.buffer.consume(data);
if self.buffer.is_full() {
let mut u64s = UnalignedBuffer::new(self.buffer.data());
self.core.ingest_chunks(&mut u64s);
debug_assert!(u64s.remaining().is_empty());
self.buffer.len = 0;
}
data
}
}
pub(crate) fn finish(&self) -> u64 {
let mut hash = if self.total_len >= CHUNK_SIZE as u64 {
self.core.finish()
} else {
self.seed.wrapping_add(PRIME_5)
};
hash = hash.wrapping_add(self.total_len);
let mut buffered_u64s = UnalignedBuffer::<u64>::new(self.buffer.data());
for buffered_u64 in &mut buffered_u64s {
let mut k1 = buffered_u64.wrapping_mul(PRIME_2);
k1 = k1.rotate_left(31);
k1 = k1.wrapping_mul(PRIME_1);
hash ^= k1;
hash = hash.rotate_left(27);
hash = hash.wrapping_mul(PRIME_1);
hash = hash.wrapping_add(PRIME_4);
}
let mut buffered_u32s = UnalignedBuffer::<u32>::new(buffered_u64s.remaining());
for buffered_u32 in &mut buffered_u32s {
let k1 = u64::from(buffered_u32).wrapping_mul(PRIME_1);
hash ^= k1;
hash = hash.rotate_left(23);
hash = hash.wrapping_mul(PRIME_2);
hash = hash.wrapping_add(PRIME_3);
}
let buffered_u8s = buffered_u32s.remaining();
for &buffered_u8 in buffered_u8s {
let k1 = u64::from(buffered_u8).wrapping_mul(PRIME_5);
hash ^= k1;
hash = hash.rotate_left(11);
hash = hash.wrapping_mul(PRIME_1);
}
hash ^= hash >> 33;
hash = hash.wrapping_mul(PRIME_2);
hash ^= hash >> 29;
hash = hash.wrapping_mul(PRIME_3);
hash ^= hash >> 32;
hash
}
pub fn seed(&self) -> u64 {
self.seed
}
pub fn total_len(&self) -> u64 {
self.total_len
}
}
impl Default for XxHash64 {
fn default() -> XxHash64 {
XxHash64::with_seed(0)
}
}
impl Hasher for XxHash64 {
fn finish(&self) -> u64 {
XxHash64::finish(self)
}
fn write(&mut self, bytes: &[u8]) {
XxHash64::write(self, bytes)
}
}
#[cfg(feature = "std")]
pub use crate::std_support::sixty_four::RandomXxHashBuilder64;
#[cfg(test)]
mod test {
use super::{RandomXxHashBuilder64, XxHash64};
use std::collections::HashMap;
use std::hash::BuildHasherDefault;
use std::prelude::v1::*;
#[test]
fn ingesting_byte_by_byte_is_equivalent_to_large_chunks() {
let bytes: Vec<_> = (0..32).map(|_| 0).collect();
let mut byte_by_byte = XxHash64::with_seed(0);
for byte in bytes.chunks(1) {
byte_by_byte.write(byte);
}
let mut one_chunk = XxHash64::with_seed(0);
one_chunk.write(&bytes);
assert_eq!(byte_by_byte.core, one_chunk.core);
}
#[test]
fn hash_of_nothing_matches_c_implementation() {
let mut hasher = XxHash64::with_seed(0);
hasher.write(&[]);
assert_eq!(hasher.finish(), 0xef46_db37_51d8_e999);
}
#[test]
fn hash_of_single_byte_matches_c_implementation() {
let mut hasher = XxHash64::with_seed(0);
hasher.write(&[42]);
assert_eq!(hasher.finish(), 0x0a9e_dece_beb0_3ae4);
}
#[test]
fn hash_of_multiple_bytes_matches_c_implementation() {
let mut hasher = XxHash64::with_seed(0);
hasher.write(b"Hello, world!\0");
assert_eq!(hasher.finish(), 0x7b06_c531_ea43_e89f);
}
#[test]
fn hash_of_multiple_chunks_matches_c_implementation() {
let bytes: Vec<_> = (0..100).collect();
let mut hasher = XxHash64::with_seed(0);
hasher.write(&bytes);
assert_eq!(hasher.finish(), 0x6ac1_e580_3216_6597);
}
#[test]
fn hash_with_different_seed_matches_c_implementation() {
let mut hasher = XxHash64::with_seed(0xae05_4331_1b70_2d91);
hasher.write(&[]);
assert_eq!(hasher.finish(), 0x4b6a_04fc_df7a_4672);
}
#[test]
fn hash_with_different_seed_and_multiple_chunks_matches_c_implementation() {
let bytes: Vec<_> = (0..100).collect();
let mut hasher = XxHash64::with_seed(0xae05_4331_1b70_2d91);
hasher.write(&bytes);
assert_eq!(hasher.finish(), 0x567e_355e_0682_e1f1);
}
#[test]
fn can_be_used_in_a_hashmap_with_a_default_seed() {
let mut hash: HashMap<_, _, BuildHasherDefault<XxHash64>> = Default::default();
hash.insert(42, "the answer");
assert_eq!(hash.get(&42), Some(&"the answer"));
}
#[test]
fn can_be_used_in_a_hashmap_with_a_random_seed() {
let mut hash: HashMap<_, _, RandomXxHashBuilder64> = Default::default();
hash.insert(42, "the answer");
assert_eq!(hash.get(&42), Some(&"the answer"));
}
#[cfg(feature = "serialize")]
type TestResult<T = ()> = Result<T, Box<dyn std::error::Error>>;
#[cfg(feature = "serialize")]
#[test]
fn test_serialization_cycle() -> TestResult {
let mut hasher = XxHash64::with_seed(0);
hasher.write(b"Hello, world!\0");
hasher.finish();
let serialized = serde_json::to_string(&hasher)?;
let unserialized: XxHash64 = serde_json::from_str(&serialized)?;
assert_eq!(hasher, unserialized);
Ok(())
}
#[cfg(feature = "serialize")]
#[test]
fn test_serialization_stability() -> TestResult {
let mut hasher = XxHash64::with_seed(0);
hasher.write(b"Hello, world!\0");
hasher.finish();
let serialized = r#"{
"total_len": 14,
"seed": 0,
"core": {
"v1": 6983438078262162902,
"v2": 14029467366897019727,
"v3": 0,
"v4": 7046029288634856825
},
"buffer": [
72, 101, 108, 108, 111, 44, 32, 119,
111, 114, 108, 100, 33, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
],
"buffer_usage": 14
}"#;
let unserialized: XxHash64 = serde_json::from_str(serialized).unwrap();
assert_eq!(hasher, unserialized);
Ok(())
}
}