Struct bytes::Bytes [−][src]
A cheaply cloneable and sliceable chunk of contiguous memory.
Bytes
is an efficient container for storing and operating on contiguous
slices of memory. It is intended for use primarily in networking code, but
could have applications elsewhere as well.
Bytes
values facilitate zero-copy network programming by allowing multiple
Bytes
objects to point to the same underlying memory.
Bytes
does not have a single implementation. It is an interface, whose
exact behavior is implemented through dynamic dispatch in several underlying
implementations of Bytes
.
All Bytes
implementations must fulfill the following requirements:
- They are cheaply cloneable and thereby shareable between an unlimited amount of components, for example by modifying a reference count.
- Instances can be sliced to refer to a subset of the the original buffer.
use bytes::Bytes; let mut mem = Bytes::from("Hello world"); let a = mem.slice(0..5); assert_eq!(a, "Hello"); let b = mem.split_to(6); assert_eq!(mem, "world"); assert_eq!(b, "Hello ");
Memory layout
The Bytes
struct itself is fairly small, limited to 4 usize
fields used
to track information about which segment of the underlying memory the
Bytes
handle has access to.
Bytes
keeps both a pointer to the shared state containing the full memory
slice and a pointer to the start of the region visible by the handle.
Bytes
also tracks the length of its view into the memory.
Sharing
Bytes
contains a vtable, which allows implementations of Bytes
to define
how sharing/cloneing is implemented in detail.
When Bytes::clone()
is called, Bytes
will call the vtable function for
cloning the backing storage in order to share it behind between multiple
Bytes
instances.
For Bytes
implementations which refer to constant memory (e.g. created
via Bytes::from_static()
) the cloning implementation will be a no-op.
For Bytes
implementations which point to a reference counted shared storage
(e.g. an Arc<[u8]>
), sharing will be implemented by increasing the
the reference count.
Due to this mechanism, multiple Bytes
instances may point to the same
shared memory region.
Each Bytes
instance can point to different sections within that
memory region, and Bytes
instances may or may not have overlapping views
into the memory.
The following diagram visualizes a scenario where 2 Bytes
instances make
use of an Arc
-based backing storage, and provide access to different views:
Arc ptrs +---------+
________________________ / | Bytes 2 |
/ +---------+
/ +-----------+ | |
|_________/ | Bytes 1 | | |
| +-----------+ | |
| | | ___/ data | tail
| data | tail |/ |
v v v v
+-----+---------------------------------+-----+
| Arc | | | | |
+-----+---------------------------------+-----+
Implementations
impl Bytes
[src]
pub const fn new() -> Bytes
[src]
Creates a new empty Bytes
.
This will not allocate and the returned Bytes
handle will be empty.
Examples
use bytes::Bytes; let b = Bytes::new(); assert_eq!(&b[..], b"");
pub const fn from_static(bytes: &'static [u8]) -> Bytes
[src]
Creates a new Bytes
from a static slice.
The returned Bytes
will point directly to the static slice. There is
no allocating or copying.
Examples
use bytes::Bytes; let b = Bytes::from_static(b"hello"); assert_eq!(&b[..], b"hello");
pub fn len(&self) -> usize
[src]
Returns the number of bytes contained in this Bytes
.
Examples
use bytes::Bytes; let b = Bytes::from(&b"hello"[..]); assert_eq!(b.len(), 5);
pub fn is_empty(&self) -> bool
[src]
Returns true if the Bytes
has a length of 0.
Examples
use bytes::Bytes; let b = Bytes::new(); assert!(b.is_empty());
pub fn copy_from_slice(data: &[u8]) -> Self
[src]
Creates Bytes
instance from slice, by copying it.
pub fn slice(&self, range: impl RangeBounds<usize>) -> Bytes
[src]
Returns a slice of self for the provided range.
This will increment the reference count for the underlying memory and
return a new Bytes
handle set to the slice.
This operation is O(1)
.
Examples
use bytes::Bytes; let a = Bytes::from(&b"hello world"[..]); let b = a.slice(2..5); assert_eq!(&b[..], b"llo");
Panics
Requires that begin <= end
and end <= self.len()
, otherwise slicing
will panic.
pub fn slice_ref(&self, subset: &[u8]) -> Bytes
[src]
Returns a slice of self that is equivalent to the given subset
.
When processing a Bytes
buffer with other tools, one often gets a
&[u8]
which is in fact a slice of the Bytes
, i.e. a subset of it.
This function turns that &[u8]
into another Bytes
, as if one had
called self.slice()
with the offsets that correspond to subset
.
This operation is O(1)
.
Examples
use bytes::Bytes; let bytes = Bytes::from(&b"012345678"[..]); let as_slice = bytes.as_ref(); let subset = &as_slice[2..6]; let subslice = bytes.slice_ref(&subset); assert_eq!(&subslice[..], b"2345");
Panics
Requires that the given sub
slice is in fact contained within the
Bytes
buffer; otherwise this function will panic.
#[must_use = "consider Bytes::truncate if you don't need the other half"]pub fn split_off(&mut self, at: usize) -> Bytes
[src]
Splits the bytes into two at the given index.
Afterwards self
contains elements [0, at)
, and the returned Bytes
contains elements [at, len)
.
This is an O(1)
operation that just increases the reference count and
sets a few indices.
Examples
use bytes::Bytes; let mut a = Bytes::from(&b"hello world"[..]); let b = a.split_off(5); assert_eq!(&a[..], b"hello"); assert_eq!(&b[..], b" world");
Panics
Panics if at > len
.
#[must_use = "consider Bytes::advance if you don't need the other half"]pub fn split_to(&mut self, at: usize) -> Bytes
[src]
Splits the bytes into two at the given index.
Afterwards self
contains elements [at, len)
, and the returned
Bytes
contains elements [0, at)
.
This is an O(1)
operation that just increases the reference count and
sets a few indices.
Examples
use bytes::Bytes; let mut a = Bytes::from(&b"hello world"[..]); let b = a.split_to(5); assert_eq!(&a[..], b" world"); assert_eq!(&b[..], b"hello");
Panics
Panics if at > len
.
pub fn truncate(&mut self, len: usize)
[src]
Shortens the buffer, keeping the first len
bytes and dropping the
rest.
If len
is greater than the buffer’s current length, this has no
effect.
The split_off
method can emulate truncate
, but this causes the
excess bytes to be returned instead of dropped.
Examples
use bytes::Bytes; let mut buf = Bytes::from(&b"hello world"[..]); buf.truncate(5); assert_eq!(buf, b"hello"[..]);
pub fn clear(&mut self)
[src]
Clears the buffer, removing all data.
Examples
use bytes::Bytes; let mut buf = Bytes::from(&b"hello world"[..]); buf.clear(); assert!(buf.is_empty());
Methods from Deref<Target = [u8]>
pub const fn len(&self) -> usize
1.0.0 (const: 1.39.0)[src]
pub const fn is_empty(&self) -> bool
1.0.0 (const: 1.39.0)[src]
pub const fn first(&self) -> Option<&T>
1.0.0[src]
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub const fn split_first(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub const fn split_last(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub const fn last(&self) -> Option<&T>
1.0.0[src]
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get
.
Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub const fn as_ptr(&self) -> *const T
1.0.0 (const: 1.32.0)[src]
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell
) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr
.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.add(i)); } }
pub const fn as_ptr_range(&self) -> Range<*const T>
1.48.0[src]
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr
for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3]; let x = &a[1] as *const _; let y = &5 as *const _; assert!(a.as_ptr_range().contains(&x)); assert!(!a.as_ptr_range().contains(&y));
pub fn iter(&self) -> Iter<'_, T>
1.0.0[src]
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
pub fn windows(&self, size: usize) -> Windows<'_, T>
1.0.0[src]
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
1.0.0[src]
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See chunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and rchunks
for the same iterator but starting at the end of the
slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
1.31.0[src]
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See chunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact
for the same iterator but starting at the end of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks_exact(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['m']);
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]ⓘ
[src]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
assuming that there’s no remainder.
Safety
This may only be called when
- The slice splits exactly into
N
-element chunks (akaself.len() % N == 0
). N != 0
.
Examples
#![feature(slice_as_chunks)] let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!']; let chunks: &[[char; 1]] = // SAFETY: 1-element chunks never have remainder unsafe { slice.as_chunks_unchecked() }; assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]); let chunks: &[[char; 3]] = // SAFETY: The slice length (6) is a multiple of 3 unsafe { slice.as_chunks_unchecked() }; assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]); // These would be unsound: // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5 // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
[src]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let (chunks, remainder) = slice.as_chunks(); assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]); assert_eq!(remainder, &['m']);
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
[src]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let (remainder, chunks) = slice.as_rchunks(); assert_eq!(remainder, &['l']); assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>
[src]
array_chunks
)Returns an iterator over N
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are array references and do not overlap. If N
does not divide the
length of the slice, then the last up to N-1
elements will be omitted and can be
retrieved from the remainder
function of the iterator.
This method is the const generic equivalent of chunks_exact
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.array_chunks(); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['m']);
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
[src]
array_windows
)Returns an iterator over overlapping windows of N
elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows
.
If N
is greater than the size of the slice, it will return no windows.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_windows)] let slice = [0, 1, 2, 3]; let mut iter = slice.array_windows(); assert_eq!(iter.next().unwrap(), &[0, 1]); assert_eq!(iter.next().unwrap(), &[1, 2]); assert_eq!(iter.next().unwrap(), &[2, 3]); assert!(iter.next().is_none());
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
1.31.0[src]
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See rchunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and chunks
for the same iterator but starting at the beginning
of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert_eq!(iter.next().unwrap(), &['l']); assert!(iter.next().is_none());
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
1.31.0[src]
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See rchunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact
for the same iterator but starting at the beginning of the
slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks_exact(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['l']);
pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F> where
F: FnMut(&T, &T) -> bool,
[src]
F: FnMut(&T, &T) -> bool,
slice_group_by
)Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called on two elements following themselves,
it means the predicate is called on slice[0]
and slice[1]
then on slice[1]
and slice[2]
and so on.
Examples
#![feature(slice_group_by)] let slice = &[1, 1, 1, 3, 3, 2, 2, 2]; let mut iter = slice.group_by(|a, b| a == b); assert_eq!(iter.next(), Some(&[1, 1, 1][..])); assert_eq!(iter.next(), Some(&[3, 3][..])); assert_eq!(iter.next(), Some(&[2, 2, 2][..])); assert_eq!(iter.next(), None);
This method can be used to extract the sorted subslices:
#![feature(slice_group_by)] let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4]; let mut iter = slice.group_by(|a, b| a <= b); assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..])); assert_eq!(iter.next(), Some(&[2, 3][..])); assert_eq!(iter.next(), Some(&[2, 3, 4][..])); assert_eq!(iter.next(), None);
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0[src]
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert_eq!(left, []); assert_eq!(right, [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert_eq!(left, [1, 2]); assert_eq!(right, [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert_eq!(left, [1, 2, 3, 4, 5, 6]); assert_eq!(right, []); }
pub fn split<F>(&self, pred: F) -> Split<'_, T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> where
F: FnMut(&T) -> bool,
1.51.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is contained in the end of the previous
subslice as a terminator.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split_inclusive(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40, 33]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33]; let mut iter = slice.split_inclusive(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[3]); assert_eq!(iter.next().unwrap(), &[10, 40, 33]); assert!(iter.next().is_none());
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F> where
F: FnMut(&T) -> bool,
1.27.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
If you do not have an &T
, but just an &U
such that T: Borrow<U>
(e.g. String: Borrow<str>
), you can use iter().any
:
let v = [String::from("hello"), String::from("world")]; // slice of `String` assert!(v.iter().any(|e| e == "hello")); // search with `&str` assert!(!v.iter().any(|e| e == "hi"));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
#[must_use = "returns the subslice without modifying the original"]pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
1.51.0[src]
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
Returns a subslice with the prefix removed.
If the slice starts with prefix
, returns the subslice after the prefix, wrapped in Some
.
If prefix
is empty, simply returns the original slice.
If the slice does not start with prefix
, returns None
.
Examples
let v = &[10, 40, 30]; assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..])); assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..])); assert_eq!(v.strip_prefix(&[50]), None); assert_eq!(v.strip_prefix(&[10, 50]), None); let prefix : &str = "he"; assert_eq!(b"hello".strip_prefix(prefix.as_bytes()), Some(b"llo".as_ref()));
#[must_use = "returns the subslice without modifying the original"]pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
1.51.0[src]
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
Returns a subslice with the suffix removed.
If the slice ends with suffix
, returns the subslice before the suffix, wrapped in Some
.
If suffix
is empty, simply returns the original slice.
If the slice does not end with suffix
, returns None
.
Examples
let v = &[10, 40, 30]; assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..])); assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..])); assert_eq!(v.strip_suffix(&[50]), None); assert_eq!(v.strip_suffix(&[50, 30]), None);
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0[src]
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search_by
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1..=4) => true, _ => false, });
If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let num = 42; let idx = s.binary_search(&num).unwrap_or_else(|x| x); s.insert(idx, num); assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0[src]
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0[src]
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search
, binary_search_by
, and partition_point
.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a, b)| b); assert!(match r { Ok(1..=4) => true, _ => false, });
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
1.30.0[src]
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
Safety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
pub fn is_sorted(&self) -> bool where
T: PartialOrd<T>,
[src]
T: PartialOrd<T>,
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted.
That is, for each element a
and its following element b
, a <= b
must hold. If the
slice yields exactly zero or one element, true
is returned.
Note that if Self::Item
is only PartialOrd
, but not Ord
, the above definition
implies that this function returns false
if any two consecutive items are not
comparable.
Examples
#![feature(is_sorted)] let empty: [i32; 0] = []; assert!([1, 2, 2, 9].is_sorted()); assert!(![1, 3, 2, 4].is_sorted()); assert!([0].is_sorted()); assert!(empty.is_sorted()); assert!(![0.0, 1.0, f32::NAN].is_sorted());
pub fn is_sorted_by<F>(&self, compare: F) -> bool where
F: FnMut(&T, &T) -> Option<Ordering>,
[src]
F: FnMut(&T, &T) -> Option<Ordering>,
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp
, this function uses the given compare
function to determine the ordering of two elements. Apart from that, it’s equivalent to
is_sorted
; see its documentation for more information.
pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool where
F: FnMut(&T) -> K,
K: PartialOrd<K>,
[src]
F: FnMut(&T) -> K,
K: PartialOrd<K>,
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f
. Apart from that, it’s equivalent to is_sorted
; see its
documentation for more information.
Examples
#![feature(is_sorted)] assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len())); assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
pub fn partition_point<P>(&self, pred: P) -> usize where
P: FnMut(&T) -> bool,
1.52.0[src]
P: FnMut(&T) -> bool,
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search
, binary_search_by
, and binary_search_by_key
.
Examples
let v = [1, 2, 3, 3, 5, 6, 7]; let i = v.partition_point(|&x| x < 5); assert_eq!(i, 4); assert!(v[..i].iter().all(|&x| x < 5)); assert!(v[i..].iter().all(|&x| !(x < 5)));
pub fn is_ascii(&self) -> bool
1.23.0[src]
Checks if all bytes in this slice are within the ASCII range.
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
1.23.0[src]
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
pub fn escape_ascii(&self) -> EscapeAscii<'_>
[src]
inherent_ascii_escape
)Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.
Examples
#![feature(inherent_ascii_escape)] let s = b"0\t\r\n'\"\\\x9d"; let escaped = s.escape_ascii().to_string(); assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
pub fn to_vec(&self) -> Vec<T, Global> where
T: Clone,
1.0.0[src]
T: Clone,
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A> where
T: Clone,
A: Allocator,
[src]
T: Clone,
A: Allocator,
allocator_api
)Copies self
into a new Vec
with an allocator.
Examples
#![feature(allocator_api)] use std::alloc::System; let s = [10, 40, 30]; let x = s.to_vec_in(System); // Here, `s` and `x` can be modified independently.
pub fn repeat(&self, n: usize) -> Vec<T, Global> where
T: Copy,
1.40.0[src]
T: Copy,
Creates a vector by repeating a slice n
times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
A panic upon overflow:
// this will panic at runtime b"0123456789abcdef".repeat(usize::MAX);
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Outputⓘ where
Item: ?Sized,
[T]: Concat<Item>,
1.0.0[src]
Item: ?Sized,
[T]: Concat<Item>,
Flattens a slice of T
into a single value Self::Output
.
Examples
assert_eq!(["hello", "world"].concat(), "helloworld"); assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
pub fn join<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
1.3.0[src]
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].join(" "), "hello world"); assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
pub fn connect<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
1.0.0[src]
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
renamed to join
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].connect(" "), "hello world"); assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
pub fn to_ascii_uppercase(&self) -> Vec<u8, Global>
1.23.0[src]
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
pub fn to_ascii_lowercase(&self) -> Vec<u8, Global>
1.23.0[src]
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
Trait Implementations
impl AsRef<[u8]> for Bytes
[src]
impl Borrow<[u8]> for Bytes
[src]
impl Buf for Bytes
[src]
fn remaining(&self) -> usize
[src]
fn chunk(&self) -> &[u8]ⓘ
[src]
fn advance(&mut self, cnt: usize)
[src]
fn copy_to_bytes(&mut self, len: usize) -> Bytes
[src]
fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize
[src]
fn has_remaining(&self) -> bool
[src]
fn copy_to_slice(&mut self, dst: &mut [u8])
[src]
fn get_u8(&mut self) -> u8
[src]
fn get_i8(&mut self) -> i8
[src]
fn get_u16(&mut self) -> u16
[src]
fn get_u16_le(&mut self) -> u16
[src]
fn get_i16(&mut self) -> i16
[src]
fn get_i16_le(&mut self) -> i16
[src]
fn get_u32(&mut self) -> u32
[src]
fn get_u32_le(&mut self) -> u32
[src]
fn get_i32(&mut self) -> i32
[src]
fn get_i32_le(&mut self) -> i32
[src]
fn get_u64(&mut self) -> u64
[src]
fn get_u64_le(&mut self) -> u64
[src]
fn get_i64(&mut self) -> i64
[src]
fn get_i64_le(&mut self) -> i64
[src]
fn get_u128(&mut self) -> u128
[src]
fn get_u128_le(&mut self) -> u128
[src]
fn get_i128(&mut self) -> i128
[src]
fn get_i128_le(&mut self) -> i128
[src]
fn get_uint(&mut self, nbytes: usize) -> u64
[src]
fn get_uint_le(&mut self, nbytes: usize) -> u64
[src]
fn get_int(&mut self, nbytes: usize) -> i64
[src]
fn get_int_le(&mut self, nbytes: usize) -> i64
[src]
fn get_f32(&mut self) -> f32
[src]
fn get_f32_le(&mut self) -> f32
[src]
fn get_f64(&mut self) -> f64
[src]
fn get_f64_le(&mut self) -> f64
[src]
fn take(self, limit: usize) -> Take<Self> where
Self: Sized,
[src]
Self: Sized,
fn chain<U: Buf>(self, next: U) -> Chain<Self, U> where
Self: Sized,
[src]
Self: Sized,
fn reader(self) -> Reader<Self>ⓘ where
Self: Sized,
[src]
Self: Sized,
impl Clone for Bytes
[src]
impl Debug for Bytes
[src]
impl Default for Bytes
[src]
impl Deref for Bytes
[src]
impl Drop for Bytes
[src]
impl Eq for Bytes
[src]
impl From<&'static [u8]> for Bytes
[src]
impl From<&'static str> for Bytes
[src]
impl From<BytesMut> for Bytes
[src]
impl From<String> for Bytes
[src]
impl From<Vec<u8, Global>> for Bytes
[src]
impl FromIterator<u8> for Bytes
[src]
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self
[src]
impl Hash for Bytes
[src]
fn hash<H>(&self, state: &mut H) where
H: Hasher,
[src]
H: Hasher,
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl IntoIterator for Bytes
[src]
type Item = u8
The type of the elements being iterated over.
type IntoIter = IntoIter<Bytes>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl<'a> IntoIterator for &'a Bytes
[src]
type Item = &'a u8
The type of the elements being iterated over.
type IntoIter = Iter<'a, u8>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl LowerHex for Bytes
[src]
impl Ord for Bytes
[src]
fn cmp(&self, other: &Bytes) -> Ordering
[src]
#[must_use]pub fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes where
Bytes: PartialEq<T>,
[src]
Bytes: PartialEq<T>,
impl PartialEq<[u8]> for Bytes
[src]
impl PartialEq<Bytes> for Bytes
[src]
impl PartialEq<Bytes> for [u8]
[src]
impl PartialEq<Bytes> for &[u8]
[src]
impl PartialEq<Bytes> for BytesMut
[src]
impl PartialEq<BytesMut> for Bytes
[src]
fn eq(&self, other: &BytesMut) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<String> for Bytes
[src]
impl PartialEq<Vec<u8, Global>> for Bytes
[src]
fn eq(&self, other: &Vec<u8>) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<str> for Bytes
[src]
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes where
Bytes: PartialOrd<T>,
[src]
Bytes: PartialOrd<T>,
fn partial_cmp(&self, other: &&'a T) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<[u8]> for Bytes
[src]
fn partial_cmp(&self, other: &[u8]) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Bytes> for Bytes
[src]
fn partial_cmp(&self, other: &Bytes) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Bytes> for [u8]
[src]
fn partial_cmp(&self, other: &Bytes) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Bytes> for &[u8]
[src]
fn partial_cmp(&self, other: &Bytes) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<String> for Bytes
[src]
fn partial_cmp(&self, other: &String) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Vec<u8, Global>> for Bytes
[src]
fn partial_cmp(&self, other: &Vec<u8>) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<str> for Bytes
[src]
fn partial_cmp(&self, other: &str) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl Send for Bytes
[src]
impl Sync for Bytes
[src]
impl UpperHex for Bytes
[src]
Auto Trait Implementations
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,