Struct engine_rocks::properties::UserProperties[][src]

pub struct UserProperties(pub HashMap<Vec<u8>, Vec<u8>>);

Implementations

impl UserProperties[src]

pub fn new() -> UserProperties[src]

fn encode(&mut self, name: &str, value: Vec<u8>)[src]

pub fn encode_u64(&mut self, name: &str, value: u64)[src]

pub fn encode_handles(&mut self, name: &str, handles: &IndexHandles)[src]

Methods from Deref<Target = HashMap<Vec<u8>, Vec<u8>>>

pub fn capacity(&self) -> usize1.0.0[src]

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

Examples

use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);

pub fn keys(&self) -> Keys<'_, K, V>1.0.0[src]

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}

pub fn values(&self) -> Values<'_, K, V>1.0.0[src]

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values() {
    println!("{}", val);
}

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>1.10.0[src]

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{}", val);
}

pub fn iter(&self) -> Iter<'_, K, V>1.0.0[src]

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>1.0.0[src]

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {} val: {}", key, val);
}

pub fn len(&self) -> usize1.0.0[src]

Returns the number of elements in the map.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);

pub fn is_empty(&self) -> bool1.0.0[src]

Returns true if the map contains no elements.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());

pub fn drain(&mut self) -> Drain<'_, K, V>1.6.0[src]

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());

pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, K, V, F> where
    F: FnMut(&K, &mut V) -> bool
[src]

🔬 This is a nightly-only experimental API. (hash_drain_filter)

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.

Note that drain_filter lets you mutate every value in the filter closure, regardless of whether you choose to keep or remove it.

If the iterator is only partially consumed or not consumed at all, each of the remaining elements will still be subjected to the closure and removed and dropped if it returns true.

It is unspecified how many more elements will be subjected to the closure if a panic occurs in the closure, or a panic occurs while dropping an element, or if the DrainFilter value is leaked.

Examples

Splitting a map into even and odd keys, reusing the original map:

#![feature(hash_drain_filter)]
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.drain_filter(|k, _v| k % 2 == 0).collect();

let mut evens = drained.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);

pub fn clear(&mut self)1.0.0[src]

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());

pub fn hasher(&self) -> &S1.9.0[src]

Returns a reference to the map’s BuildHasher.

Examples

use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();

pub fn reserve(&mut self, additional: usize)1.0.0[src]

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples

use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>[src]

🔬 This is a nightly-only experimental API. (try_reserve)

new API

Tries to reserve capacity for at least additional more elements to be inserted in the given HashMap<K, V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples

#![feature(try_reserve)]
use std::collections::HashMap;

let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");

pub fn shrink_to_fit(&mut self)1.0.0[src]

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);

pub fn shrink_to(&mut self, min_capacity: usize)[src]

🔬 This is a nightly-only experimental API. (shrink_to)

new API

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

If the current capacity is less than the lower limit, this is a no-op.

Examples

#![feature(shrink_to)]
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);

pub fn entry(&mut self, key: K) -> Entry<'_, K, V>1.0.0[src]

Gets the given key’s corresponding entry in the map for in-place manipulation.

Examples

use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    let counter = letters.entry(ch).or_insert(0);
    *counter += 1;
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);

pub fn get<Q>(&self, k: &Q) -> Option<&V> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.0.0[src]

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.40.0[src]

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);

pub fn contains_key<Q>(&self, k: &Q) -> bool where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.0.0[src]

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.0.0[src]

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");

pub fn insert(&mut self, k: K, v: V) -> Option<V>1.0.0[src]

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");

pub fn try_insert(
    &mut self,
    key: K,
    value: V
) -> Result<&mut V, OccupiedError<'_, K, V>>
[src]

🔬 This is a nightly-only experimental API. (map_try_insert)

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

Examples

Basic usage:

#![feature(map_try_insert)]

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");

pub fn remove<Q>(&mut self, k: &Q) -> Option<V> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.0.0[src]

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized
1.27.0[src]

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(&K, &mut V) -> bool
1.18.0[src]

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) such that f(&k, &mut v) returns false.

Examples

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);

pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>[src]

🔬 This is a nightly-only experimental API. (hash_raw_entry)

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it’s much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>[src]

🔬 This is a nightly-only experimental API. (hash_raw_entry)

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations

impl DecodeProperties for UserProperties[src]

impl Deref for UserProperties[src]

type Target = HashMap<Vec<u8>, Vec<u8>>

The resulting type after dereferencing.

impl DerefMut for UserProperties[src]

Auto Trait Implementations

impl RefUnwindSafe for UserProperties

impl Send for UserProperties

impl Sync for UserProperties

impl Unpin for UserProperties

impl UnwindSafe for UserProperties

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T> Instrument for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T[src]

type Init = T

The type for initializers.

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T> Sealed<T> for T where
    T: ?Sized
[src]

impl<T> SendSyncUnwindSafe for T where
    T: Send + Sync + UnwindSafe + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]