Trait nom::lib::std::alloc::GlobalAlloc1.28.0[][src]

pub unsafe trait GlobalAlloc {
    pub unsafe fn alloc(&self, layout: Layout) -> *mut u8;
pub unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout); pub unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { ... }
pub unsafe fn realloc(
        &self,
        ptr: *mut u8,
        layout: Layout,
        new_size: usize
    ) -> *mut u8 { ... } }

A memory allocator that can be registered as the standard library’s default through the #[global_allocator] attribute.

Some of the methods require that a memory block be currently allocated via an allocator. This means that:

Example

use std::alloc::{GlobalAlloc, Layout, alloc};
use std::ptr::null_mut;

struct MyAllocator;

unsafe impl GlobalAlloc for MyAllocator {
    unsafe fn alloc(&self, _layout: Layout) -> *mut u8 { null_mut() }
    unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {}
}

#[global_allocator]
static A: MyAllocator = MyAllocator;

fn main() {
    unsafe {
        assert!(alloc(Layout::new::<u32>()).is_null())
    }
}

Safety

The GlobalAlloc trait is an unsafe trait for a number of reasons, and implementors must ensure that they adhere to these contracts:

Required methods

pub unsafe fn alloc(&self, layout: Layout) -> *mut u8[src]

Allocate memory as described by the given layout.

Returns a pointer to newly-allocated memory, or null to indicate allocation failure.

Safety

This function is unsafe because undefined behavior can result if the caller does not ensure that layout has non-zero size.

(Extension subtraits might provide more specific bounds on behavior, e.g., guarantee a sentinel address or a null pointer in response to a zero-size allocation request.)

The allocated block of memory may or may not be initialized.

Errors

Returning a null pointer indicates that either memory is exhausted or layout does not meet this allocator’s size or alignment constraints.

Implementations are encouraged to return null on memory exhaustion rather than aborting, but this is not a strict requirement. (Specifically: it is legal to implement this trait atop an underlying native allocation library that aborts on memory exhaustion.)

Clients wishing to abort computation in response to an allocation error are encouraged to call the handle_alloc_error function, rather than directly invoking panic! or similar.

pub unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout)[src]

Deallocate the block of memory at the given ptr pointer with the given layout.

Safety

This function is unsafe because undefined behavior can result if the caller does not ensure all of the following:

  • ptr must denote a block of memory currently allocated via this allocator,

  • layout must be the same layout that was used to allocate that block of memory.

Loading content...

Provided methods

pub unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8[src]

Behaves like alloc, but also ensures that the contents are set to zero before being returned.

Safety

This function is unsafe for the same reasons that alloc is. However the allocated block of memory is guaranteed to be initialized.

Errors

Returning a null pointer indicates that either memory is exhausted or layout does not meet allocator’s size or alignment constraints, just as in alloc.

Clients wishing to abort computation in response to an allocation error are encouraged to call the handle_alloc_error function, rather than directly invoking panic! or similar.

pub unsafe fn realloc(
    &self,
    ptr: *mut u8,
    layout: Layout,
    new_size: usize
) -> *mut u8
[src]

Shrink or grow a block of memory to the given new_size. The block is described by the given ptr pointer and layout.

If this returns a non-null pointer, then ownership of the memory block referenced by ptr has been transferred to this allocator. The memory may or may not have been deallocated, and should be considered unusable (unless of course it was transferred back to the caller again via the return value of this method). The new memory block is allocated with layout, but with the size updated to new_size. This new layout should be used when deallocating the new memory block with dealloc. The range 0..min(layout.size(), new_size) of the new memory block is guaranteed to have the same values as the original block.

If this method returns null, then ownership of the memory block has not been transferred to this allocator, and the contents of the memory block are unaltered.

Safety

This function is unsafe because undefined behavior can result if the caller does not ensure all of the following:

  • ptr must be currently allocated via this allocator,

  • layout must be the same layout that was used to allocate that block of memory,

  • new_size must be greater than zero.

  • new_size, when rounded up to the nearest multiple of layout.align(), must not overflow (i.e., the rounded value must be less than usize::MAX).

(Extension subtraits might provide more specific bounds on behavior, e.g., guarantee a sentinel address or a null pointer in response to a zero-size allocation request.)

Errors

Returns null if the new layout does not meet the size and alignment constraints of the allocator, or if reallocation otherwise fails.

Implementations are encouraged to return null on memory exhaustion rather than panicking or aborting, but this is not a strict requirement. (Specifically: it is legal to implement this trait atop an underlying native allocation library that aborts on memory exhaustion.)

Clients wishing to abort computation in response to a reallocation error are encouraged to call the handle_alloc_error function, rather than directly invoking panic! or similar.

Loading content...

Implementors

impl GlobalAlloc for System[src]

Loading content...