1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod inflights;
mod progress;
mod state;

pub use self::inflights::Inflights;
pub use self::progress::Progress;
pub use self::state::ProgressState;

use slog::Logger;

use crate::confchange::{MapChange, MapChangeType};
use crate::eraftpb::ConfState;
use crate::quorum::{AckedIndexer, Index, VoteResult};
use crate::{DefaultHashBuilder, HashMap, HashSet, JointConfig};
use std::fmt::Debug;

use getset::Getters;

/// Config reflects the configuration tracked in a ProgressTracker.
#[derive(Clone, Debug, Default, PartialEq, Getters)]
pub struct Configuration {
    #[get = "pub"]
    pub(crate) voters: JointConfig,
    /// Learners is a set of IDs corresponding to the learners active in the
    /// current configuration.
    ///
    /// Invariant: Learners and Voters does not intersect, i.e. if a peer is in
    /// either half of the joint config, it can't be a learner; if it is a
    /// learner it can't be in either half of the joint config. This invariant
    /// simplifies the implementation since it allows peers to have clarity about
    /// its current role without taking into account joint consensus.
    #[get = "pub"]
    pub(crate) learners: HashSet<u64>,
    /// When we turn a voter into a learner during a joint consensus transition,
    /// we cannot add the learner directly when entering the joint state. This is
    /// because this would violate the invariant that the intersection of
    /// voters and learners is empty. For example, assume a Voter is removed and
    /// immediately re-added as a learner (or in other words, it is demoted):
    ///
    /// Initially, the configuration will be
    ///
    ///   voters:   {1 2 3}
    ///   learners: {}
    ///
    /// and we want to demote 3. Entering the joint configuration, we naively get
    ///
    ///   voters:   {1 2} & {1 2 3}
    ///   learners: {3}
    ///
    /// but this violates the invariant (3 is both voter and learner). Instead,
    /// we get
    ///
    ///   voters:   {1 2} & {1 2 3}
    ///   learners: {}
    ///   next_learners: {3}
    ///
    /// Where 3 is now still purely a voter, but we are remembering the intention
    /// to make it a learner upon transitioning into the final configuration:
    ///
    ///   voters:   {1 2}
    ///   learners: {3}
    ///   next_learners: {}
    ///
    /// Note that next_learners is not used while adding a learner that is not
    /// also a voter in the joint config. In this case, the learner is added
    /// right away when entering the joint configuration, so that it is caught up
    /// as soon as possible.
    #[get = "pub"]
    pub(crate) learners_next: HashSet<u64>,
    /// True if the configuration is joint and a transition to the incoming
    /// configuration should be carried out automatically by Raft when this is
    /// possible. If false, the configuration will be joint until the application
    /// initiates the transition manually.
    #[get = "pub"]
    pub(crate) auto_leave: bool,
}

// Display and crate::itertools used only for test
#[cfg(test)]
impl std::fmt::Display for Configuration {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        use itertools::Itertools;
        if self.voters.outgoing.is_empty() {
            write!(f, "voters={}", self.voters.incoming)?
        } else {
            write!(
                f,
                "voters={}&&{}",
                self.voters.incoming, self.voters.outgoing
            )?
        }
        if !self.learners.is_empty() {
            write!(
                f,
                " learners=({})",
                self.learners
                    .iter()
                    .sorted_by(|&a, &b| a.cmp(b))
                    .map(|x| x.to_string())
                    .collect::<Vec<String>>()
                    .join(" ")
            )?
        }
        if !self.learners_next.is_empty() {
            write!(
                f,
                " learners_next=({})",
                self.learners_next
                    .iter()
                    .map(|x| x.to_string())
                    .collect::<Vec<String>>()
                    .join(" ")
            )?
        }
        if self.auto_leave {
            write!(f, " autoleave")?
        }
        Ok(())
    }
}

impl Configuration {
    /// Create a new configuration with the given configuration.
    pub fn new(
        voters: impl IntoIterator<Item = u64>,
        learners: impl IntoIterator<Item = u64>,
    ) -> Self {
        Self {
            voters: JointConfig::new(voters.into_iter().collect()),
            auto_leave: false,
            learners: learners.into_iter().collect(),
            learners_next: HashSet::default(),
        }
    }

    fn with_capacity(voters: usize, learners: usize) -> Self {
        Self {
            voters: JointConfig::with_capacity(voters),
            learners: HashSet::with_capacity_and_hasher(learners, DefaultHashBuilder::default()),
            learners_next: HashSet::default(),
            auto_leave: false,
        }
    }

    /// Create a new `ConfState` from the configuration itself.
    pub fn to_conf_state(&self) -> ConfState {
        // Note: Different from etcd, we don't sort.
        let mut state = ConfState::default();
        state.set_voters(self.voters.incoming.raw_slice());
        state.set_voters_outgoing(self.voters.outgoing.raw_slice());
        state.set_learners(self.learners.iter().cloned().collect());
        state.set_learners_next(self.learners_next.iter().cloned().collect());
        state.auto_leave = self.auto_leave;
        state
    }

    fn clear(&mut self) {
        self.voters.clear();
        self.learners.clear();
        self.learners_next.clear();
        self.auto_leave = false;
    }
}

pub type ProgressMap = HashMap<u64, Progress>;

impl AckedIndexer for ProgressMap {
    fn acked_index(&self, voter_id: u64) -> Option<Index> {
        self.get(&voter_id).map(|p| Index {
            index: p.matched,
            group_id: p.commit_group_id,
        })
    }
}

/// `ProgressTracker` contains several `Progress`es,
/// which could be `Leader`, `Follower` and `Learner`.
#[derive(Clone, Getters)]
pub struct ProgressTracker {
    progress: ProgressMap,

    /// The current configuration state of the cluster.
    #[get = "pub"]
    conf: Configuration,
    #[doc(hidden)]
    #[get = "pub"]
    votes: HashMap<u64, bool>,
    #[get = "pub(crate)"]
    max_inflight: usize,

    group_commit: bool,
    pub(crate) logger: Logger,
}

impl ProgressTracker {
    /// Creates a new ProgressTracker.
    pub fn new(max_inflight: usize, logger: Logger) -> Self {
        Self::with_capacity(0, 0, max_inflight, logger)
    }

    /// Create a progress set with the specified sizes already reserved.
    pub fn with_capacity(
        voters: usize,
        learners: usize,
        max_inflight: usize,
        logger: Logger,
    ) -> Self {
        ProgressTracker {
            progress: HashMap::with_capacity_and_hasher(
                voters + learners,
                DefaultHashBuilder::default(),
            ),
            conf: Configuration::with_capacity(voters, learners),
            votes: HashMap::with_capacity_and_hasher(voters, DefaultHashBuilder::default()),
            max_inflight,
            group_commit: false,
            logger,
        }
    }

    /// Configures group commit.
    pub fn enable_group_commit(&mut self, enable: bool) {
        self.group_commit = enable;
    }

    /// Whether enable group commit.
    pub fn group_commit(&self) -> bool {
        self.group_commit
    }

    pub(crate) fn clear(&mut self) {
        self.progress.clear();
        self.conf.clear();
        self.votes.clear();
    }

    /// Returns true if (and only if) there is only one voting member
    /// (i.e. the leader) in the current configuration.
    pub fn is_singleton(&self) -> bool {
        self.conf.voters.is_singleton()
    }

    /// Grabs a reference to the progress of a node.
    #[inline]
    pub fn get(&self, id: u64) -> Option<&Progress> {
        self.progress.get(&id)
    }

    /// Grabs a mutable reference to the progress of a node.
    #[inline]
    pub fn get_mut(&mut self, id: u64) -> Option<&mut Progress> {
        self.progress.get_mut(&id)
    }

    /// Returns an iterator across all the nodes and their progress.
    ///
    /// **Note:** Do not use this for majority/quorum calculation. The Raft node may be
    /// transitioning to a new configuration and have two qourums. Use `has_quorum` instead.
    #[inline]
    pub fn iter(&self) -> impl ExactSizeIterator<Item = (&u64, &Progress)> {
        self.progress.iter()
    }

    /// Returns a mutable iterator across all the nodes and their progress.
    ///
    /// **Note:** Do not use this for majority/quorum calculation. The Raft node may be
    /// transitioning to a new configuration and have two qourums. Use `has_quorum` instead.
    #[inline]
    pub fn iter_mut(&mut self) -> impl ExactSizeIterator<Item = (&u64, &mut Progress)> {
        self.progress.iter_mut()
    }

    /// Returns the maximal committed index for the cluster. The bool flag indicates whether
    /// the index is computed by group commit algorithm successfully.
    ///
    /// Eg. If the matched indexes are [2,2,2,4,5], it will return 2.
    /// If the matched indexes and groups are `[(1, 1), (2, 2), (3, 2)]`, it will return 1.
    pub fn maximal_committed_index(&mut self) -> (u64, bool) {
        self.conf
            .voters
            .committed_index(self.group_commit, &self.progress)
    }

    /// Prepares for a new round of vote counting via recordVote.
    pub fn reset_votes(&mut self) {
        self.votes.clear();
    }

    /// Records that the node with the given id voted for this Raft
    /// instance if v == true (and declined it otherwise).
    pub fn record_vote(&mut self, id: u64, vote: bool) {
        self.votes.entry(id).or_insert(vote);
    }

    /// TallyVotes returns the number of granted and rejected Votes, and whether the
    /// election outcome is known.
    pub fn tally_votes(&self) -> (usize, usize, VoteResult) {
        // Make sure to populate granted/rejected correctly even if the Votes slice
        // contains members no longer part of the configuration. This doesn't really
        // matter in the way the numbers are used (they're informational), but might
        // as well get it right.
        let (mut granted, mut rejected) = (0, 0);
        for (id, vote) in &self.votes {
            if !self.conf.voters.contains(*id) {
                continue;
            }
            if *vote {
                granted += 1;
            } else {
                rejected += 1;
            }
        }
        let result = self.vote_result(&self.votes);
        (granted, rejected, result)
    }

    /// Returns the Candidate's eligibility in the current election.
    ///
    /// If it is still eligible, it should continue polling nodes and checking.
    /// Eventually, the election will result in this returning either `Elected`
    /// or `Ineligible`, meaning the election can be concluded.
    pub fn vote_result(&self, votes: &HashMap<u64, bool>) -> VoteResult {
        self.conf.voters.vote_result(|id| votes.get(&id).cloned())
    }

    /// Determines if the current quorum is active according to the this raft node.
    /// Doing this will set the `recent_active` of each peer to false.
    ///
    /// This should only be called by the leader.
    pub fn quorum_recently_active(&mut self, perspective_of: u64) -> bool {
        let mut active =
            HashSet::with_capacity_and_hasher(self.progress.len(), DefaultHashBuilder::default());
        for (id, pr) in &mut self.progress {
            if *id == perspective_of {
                pr.recent_active = true;
                active.insert(*id);
            } else if pr.recent_active {
                // It doesn't matter whether it's learner. As we calculate quorum
                // by actual ids instead of count.
                active.insert(*id);
                pr.recent_active = false;
            }
        }
        self.has_quorum(&active)
    }

    /// Determine if a quorum is formed from the given set of nodes.
    ///
    /// This is the only correct way to verify you have reached a quorum for the whole group.
    #[inline]
    pub fn has_quorum(&self, potential_quorum: &HashSet<u64>) -> bool {
        self.conf
            .voters
            .vote_result(|id| potential_quorum.get(&id).map(|_| true))
            == VoteResult::Won
    }

    #[inline]
    pub(crate) fn progress(&self) -> &ProgressMap {
        &self.progress
    }

    /// Applies configuration and updates progress map to match the configuration.
    pub fn apply_conf(&mut self, conf: Configuration, changes: MapChange, next_idx: u64) {
        self.conf = conf;
        for (id, change_type) in changes {
            match change_type {
                MapChangeType::Add => {
                    let mut pr = Progress::new(next_idx, self.max_inflight);
                    // When a node is first added, we should mark it as recently active.
                    // Otherwise, CheckQuorum may cause us to step down if it is invoked
                    // before the added node has had a chance to communicate with us.
                    pr.recent_active = true;
                    self.progress.insert(id, pr);
                }
                MapChangeType::Remove => {
                    self.progress.remove(&id);
                }
            }
        }
    }
}