Struct time::Time[][src]

pub struct Time { /* fields omitted */ }

The clock time within a given date. Nanosecond precision.

All minutes are assumed to have exactly 60 seconds; no attempt is made to handle leap seconds (either positive or negative).

When comparing two Times, they are assumed to be in the same calendar date.

Implementations

impl Time[src]

pub const fn midnight() -> Self[src]

Create a Time that is exactly midnight.

assert_eq!(Time::midnight(), time!(0:00));

pub const fn try_from_hms(
    hour: u8,
    minute: u8,
    second: u8
) -> Result<Self, ComponentRange>
[src]

Attempt to create a Time from the hour, minute, and second.

assert!(Time::try_from_hms(1, 2, 3).is_ok());

Returns None if any component is not valid.

assert!(Time::try_from_hms(24, 0, 0).is_err()); // 24 isn't a valid hour.
assert!(Time::try_from_hms(0, 60, 0).is_err()); // 60 isn't a valid minute.
assert!(Time::try_from_hms(0, 0, 60).is_err()); // 60 isn't a valid second.

This function is const fn when using rustc >= 1.46.

pub const fn try_from_hms_milli(
    hour: u8,
    minute: u8,
    second: u8,
    millisecond: u16
) -> Result<Self, ComponentRange>
[src]

Attempt to create a Time from the hour, minute, second, and millisecond.

assert!(Time::try_from_hms_milli(1, 2, 3, 4).is_ok());

Returns None if any component is not valid.

assert!(Time::try_from_hms_milli(24, 0, 0, 0).is_err()); // 24 isn't a valid hour.
assert!(Time::try_from_hms_milli(0, 60, 0, 0).is_err()); // 60 isn't a valid minute.
assert!(Time::try_from_hms_milli(0, 0, 60, 0).is_err()); // 60 isn't a valid second.
assert!(Time::try_from_hms_milli(0, 0, 0, 1_000).is_err()); // 1_000 isn't a valid millisecond.

This function is const fn when using rustc >= 1.46.

pub const fn try_from_hms_micro(
    hour: u8,
    minute: u8,
    second: u8,
    microsecond: u32
) -> Result<Self, ComponentRange>
[src]

Attempt to create a Time from the hour, minute, second, and microsecond.

assert!(Time::try_from_hms_micro(1, 2, 3, 4).is_ok());

Returns None if any component is not valid.

assert!(Time::try_from_hms_micro(24, 0, 0, 0).is_err()); // 24 isn't a valid hour.
assert!(Time::try_from_hms_micro(0, 60, 0, 0).is_err()); // 60 isn't a valid minute.
assert!(Time::try_from_hms_micro(0, 0, 60, 0).is_err()); // 60 isn't a valid second.
assert!(Time::try_from_hms_micro(0, 0, 0, 1_000_000).is_err()); // 1_000_000 isn't a valid microsecond.

This function is const fn when using rustc >= 1.46.

pub const fn try_from_hms_nano(
    hour: u8,
    minute: u8,
    second: u8,
    nanosecond: u32
) -> Result<Self, ComponentRange>
[src]

Attempt to create a Time from the hour, minute, second, and nanosecond.

assert!(Time::try_from_hms_nano(1, 2, 3, 4).is_ok());

Returns None if any component is not valid.

assert!(Time::try_from_hms_nano(24, 0, 0, 0).is_err()); // 24 isn't a valid hour.
assert!(Time::try_from_hms_nano(0, 60, 0, 0).is_err()); // 60 isn't a valid minute.
assert!(Time::try_from_hms_nano(0, 0, 60, 0).is_err()); // 60 isn't a valid second.
assert!(Time::try_from_hms_nano(0, 0, 0, 1_000_000_000).is_err()); // 1_000_000_000 isn't a valid nanosecond.

This function is const fn when using rustc >= 1.46.

pub fn now() -> Self[src]

👎 Deprecated since 0.2.7:

This method returns a value that assumes an offset of UTC.

Create a Time representing the current time (UTC).

println!("{:?}", Time::now());

pub const fn hour(self) -> u8[src]

Get the clock hour.

The returned value will always be in the range 0..24.

assert_eq!(time!(0:00:00).hour(), 0);
assert_eq!(time!(23:59:59).hour(), 23);

pub const fn minute(self) -> u8[src]

Get the minute within the hour.

The returned value will always be in the range 0..60.

assert_eq!(time!(0:00:00).minute(), 0);
assert_eq!(time!(23:59:59).minute(), 59);

pub const fn second(self) -> u8[src]

Get the second within the minute.

The returned value will always be in the range 0..60.

assert_eq!(time!(0:00:00).second(), 0);
assert_eq!(time!(23:59:59).second(), 59);

pub const fn millisecond(self) -> u16[src]

Get the milliseconds within the second.

The returned value will always be in the range 0..1_000.

assert_eq!(time!(0:00).millisecond(), 0);
assert_eq!(time!(23:59:59.999).millisecond(), 999);

pub const fn microsecond(self) -> u32[src]

Get the microseconds within the second.

The returned value will always be in the range 0..1_000_000.

assert_eq!(time!(0:00).microsecond(), 0);
assert_eq!(time!(23:59:59.999_999).microsecond(), 999_999);

pub const fn nanosecond(self) -> u32[src]

Get the nanoseconds within the second.

The returned value will always be in the range 0..1_000_000_000.

assert_eq!(time!(0:00).nanosecond(), 0);
assert_eq!(time!(23:59:59.999_999_999).nanosecond(), 999_999_999);

impl Time[src]

Methods that allow formatting the Time.

pub fn format(self, format: impl AsRef<str>) -> String[src]

Format the Time using the provided string.

assert_eq!(time!(0:00).format("%r"), "12:00:00 am");

pub fn lazy_format(self, format: impl AsRef<str>) -> impl Display[src]

Format the Time using the provided string.

assert_eq!(time!(0:00).lazy_format("%r").to_string(), "12:00:00 am");

pub fn parse(s: impl AsRef<str>, format: impl AsRef<str>) -> Result<Self, Error>[src]

Attempt to parse a Time using the provided string.

assert_eq!(
    Time::parse("0:00:00", "%T"),
    Ok(time!(0:00))
);
assert_eq!(
    Time::parse("23:59:59", "%T"),
    Ok(time!(23:59:59))
);
assert_eq!(
    Time::parse("12:00:00 am", "%r"),
    Ok(time!(0:00))
);
assert_eq!(
    Time::parse("12:00:00 pm", "%r"),
    Ok(time!(12:00))
);
assert_eq!(
    Time::parse("11:59:59 pm", "%r"),
    Ok(time!(23:59:59))
);

Trait Implementations

impl Add<Duration> for Time[src]

type Output = Self

The resulting type after applying the + operator.

fn add(self, duration: Duration) -> Self::Output[src]

Add the sub-day time of the Duration to the Time. Wraps on overflow.

assert_eq!(time!(12:00) + 2.hours(), time!(14:00));
assert_eq!(time!(0:00:01) + (-2).seconds(), time!(23:59:59));

impl Add<Duration> for Time[src]

type Output = Self

The resulting type after applying the + operator.

fn add(self, duration: StdDuration) -> Self::Output[src]

Add the sub-day time of the std::time::Duration to the Time. Wraps on overflow.

assert_eq!(time!(12:00) + 2.std_hours(), time!(14:00));
assert_eq!(time!(23:59:59) + 2.std_seconds(), time!(0:00:01));

impl AddAssign<Duration> for Time[src]

fn add_assign(&mut self, duration: Duration)[src]

Add the sub-day time of the Duration to the existing Time. Wraps on overflow.

let mut time = time!(12:00);
time += 2.hours();
assert_eq!(time, time!(14:00));

let mut time = time!(0:00:01);
time += (-2).seconds();
assert_eq!(time, time!(23:59:59));

impl AddAssign<Duration> for Time[src]

fn add_assign(&mut self, duration: StdDuration)[src]

Add the sub-day time of the std::time::Duration to the existing Time. Wraps on overflow.

let mut time = time!(12:00);
time += 2.std_hours();
assert_eq!(time, time!(14:00));

let mut time = time!(23:59:59);
time += 2.std_seconds();
assert_eq!(time, time!(0:00:01));

impl Clone for Time[src]

impl Copy for Time[src]

impl Debug for Time[src]

impl Display for Time[src]

impl Eq for Time[src]

impl Hash for Time[src]

impl Ord for Time[src]

impl PartialEq<Time> for Time[src]

impl PartialOrd<Time> for Time[src]

impl StructuralEq for Time[src]

impl StructuralPartialEq for Time[src]

impl Sub<Duration> for Time[src]

type Output = Self

The resulting type after applying the - operator.

fn sub(self, duration: Duration) -> Self::Output[src]

Subtract the sub-day time of the Duration from the Time. Wraps on overflow.

assert_eq!(
    time!(14:00) - 2.hours(),
    time!(12:00)
);
assert_eq!(
    time!(23:59:59) - (-2).seconds(),
    time!(0:00:01)
);

impl Sub<Duration> for Time[src]

type Output = Self

The resulting type after applying the - operator.

fn sub(self, duration: StdDuration) -> Self::Output[src]

Subtract the sub-day time of the std::time::Duration from the Time. Wraps on overflow.

assert_eq!(time!(14:00) - 2.std_hours(), time!(12:00));
assert_eq!(time!(0:00:01) - 2.std_seconds(), time!(23:59:59));

impl Sub<Time> for Time[src]

type Output = Duration

The resulting type after applying the - operator.

fn sub(self, rhs: Self) -> Self::Output[src]

Subtract two Times, returning the Duration between. This assumes both Times are in the same calendar day.

assert_eq!(time!(0:00) - time!(0:00), 0.seconds());
assert_eq!(time!(1:00) - time!(0:00), 1.hours());
assert_eq!(time!(0:00) - time!(1:00), (-1).hours());
assert_eq!(time!(0:00) - time!(23:00), (-23).hours());

impl SubAssign<Duration> for Time[src]

fn sub_assign(&mut self, duration: Duration)[src]

Subtract the sub-day time of the Duration from the existing Time. Wraps on overflow.

let mut time = time!(14:00);
time -= 2.hours();
assert_eq!(time, time!(12:00));

let mut time = time!(23:59:59);
time -= (-2).seconds();
assert_eq!(time, time!(0:00:01));

impl SubAssign<Duration> for Time[src]

fn sub_assign(&mut self, duration: StdDuration)[src]

Subtract the sub-day time of the std::time::Duration from the existing Time. Wraps on overflow.

let mut time = time!(14:00);
time -= 2.std_hours();
assert_eq!(time, time!(12:00));

let mut time = time!(0:00:01);
time -= 2.std_seconds();
assert_eq!(time, time!(23:59:59));

Auto Trait Implementations

impl RefUnwindSafe for Time

impl Send for Time

impl Sync for Time

impl Unpin for Time

impl UnwindSafe for Time

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Sealed<T> for T where
    T: ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.