Struct tokio::stream::StreamMap [−][src]
Combine many streams into one, indexing each source stream with a unique key.
StreamMap
is similar to StreamExt::merge
in that it combines source
streams into a single merged stream that yields values in the order that
they arrive from the source streams. However, StreamMap
has a lot more
flexibility in usage patterns.
StreamMap
can:
- Merge an arbitrary number of streams.
- Track which source stream the value was received from.
- Handle inserting and removing streams from the set of managed streams at any point during iteration.
All source streams held by StreamMap
are indexed using a key. This key is
included with the value when a source stream yields a value. The key is also
used to remove the stream from the StreamMap
before the stream has
completed streaming.
Unpin
Because the StreamMap
API moves streams during runtime, both streams and
keys must be Unpin
. In order to insert a !Unpin
stream into a
StreamMap
, use pin!
to pin the stream to the stack or Box::pin
to
pin the stream in the heap.
Implementation
StreamMap
is backed by a Vec<(K, V)>
. There is no guarantee that this
internal implementation detail will persist in future versions, but it is
important to know the runtime implications. In general, StreamMap
works
best with a “smallish” number of streams as all entries are scanned on
insert, remove, and polling. In cases where a large number of streams need
to be merged, it may be advisable to use tasks sending values on a shared
mpsc
channel.
Examples
Merging two streams, then remove them after receiving the first value
use tokio::stream::{StreamExt, StreamMap}; use tokio::sync::mpsc; #[tokio::main] async fn main() { let (mut tx1, rx1) = mpsc::channel(10); let (mut tx2, rx2) = mpsc::channel(10); tokio::spawn(async move { tx1.send(1).await.unwrap(); // This value will never be received. The send may or may not return // `Err` depending on if the remote end closed first or not. let _ = tx1.send(2).await; }); tokio::spawn(async move { tx2.send(3).await.unwrap(); let _ = tx2.send(4).await; }); let mut map = StreamMap::new(); // Insert both streams map.insert("one", rx1); map.insert("two", rx2); // Read twice for _ in 0..2 { let (key, val) = map.next().await.unwrap(); if key == "one" { assert_eq!(val, 1); } else { assert_eq!(val, 3); } // Remove the stream to prevent reading the next value map.remove(key); } }
This example models a read-only client to a chat system with channels. The
client sends commands to join and leave channels. StreamMap
is used to
manage active channel subscriptions.
For simplicity, messages are displayed with println!
, but they could be
sent to the client over a socket.
use tokio::stream::{Stream, StreamExt, StreamMap}; enum Command { Join(String), Leave(String), } fn commands() -> impl Stream<Item = Command> { // Streams in user commands by parsing `stdin`. } // Join a channel, returns a stream of messages received on the channel. fn join(channel: &str) -> impl Stream<Item = String> + Unpin { // left as an exercise to the reader } #[tokio::main] async fn main() { let mut channels = StreamMap::new(); // Input commands (join / leave channels). let cmds = commands(); tokio::pin!(cmds); loop { tokio::select! { Some(cmd) = cmds.next() => { match cmd { Command::Join(chan) => { // Join the channel and add it to the `channels` // stream map let msgs = join(&chan); channels.insert(chan, msgs); } Command::Leave(chan) => { channels.remove(&chan); } } } Some((chan, msg)) = channels.next() => { // Received a message, display it on stdout with the channel // it originated from. println!("{}: {}", chan, msg); } // Both the `commands` stream and the `channels` stream are // complete. There is no more work to do, so leave the loop. else => break, } } }
Implementations
impl<K, V> StreamMap<K, V>
[src]
pub fn new() -> StreamMap<K, V>
[src]
Creates an empty StreamMap
.
The stream map is initially created with a capacity of 0
, so it will
not allocate until it is first inserted into.
Examples
use tokio::stream::{StreamMap, Pending}; let map: StreamMap<&str, Pending<()>> = StreamMap::new();
pub fn with_capacity(capacity: usize) -> StreamMap<K, V>
[src]
Creates an empty StreamMap
with the specified capacity.
The stream map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the stream map will not allocate.
Examples
use tokio::stream::{StreamMap, Pending}; let map: StreamMap<&str, Pending<()>> = StreamMap::with_capacity(10);
pub fn keys(&self) -> impl Iterator<Item = &K>
[src]
Returns an iterator visiting all keys in arbitrary order.
The iterator element type is &’a K.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); map.insert("a", pending::<i32>()); map.insert("b", pending()); map.insert("c", pending()); for key in map.keys() { println!("{}", key); }
pub fn values(&self) -> impl Iterator<Item = &V>
[src]
An iterator visiting all values in arbitrary order.
The iterator element type is &’a V.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); map.insert("a", pending::<i32>()); map.insert("b", pending()); map.insert("c", pending()); for stream in map.values() { println!("{:?}", stream); }
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut V>
[src]
An iterator visiting all values mutably in arbitrary order.
The iterator element type is &’a mut V.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); map.insert("a", pending::<i32>()); map.insert("b", pending()); map.insert("c", pending()); for stream in map.values_mut() { println!("{:?}", stream); }
pub fn capacity(&self) -> usize
[src]
Returns the number of streams the map can hold without reallocating.
This number is a lower bound; the StreamMap
might be able to hold
more, but is guaranteed to be able to hold at least this many.
Examples
use tokio::stream::{StreamMap, Pending}; let map: StreamMap<i32, Pending<()>> = StreamMap::with_capacity(100); assert!(map.capacity() >= 100);
pub fn len(&self) -> usize
[src]
Returns the number of streams in the map.
Examples
use tokio::stream::{StreamMap, pending}; let mut a = StreamMap::new(); assert_eq!(a.len(), 0); a.insert(1, pending::<i32>()); assert_eq!(a.len(), 1);
pub fn is_empty(&self) -> bool
[src]
Returns true
if the map contains no elements.
Examples
use std::collections::HashMap; let mut a = HashMap::new(); assert!(a.is_empty()); a.insert(1, "a"); assert!(!a.is_empty());
pub fn clear(&mut self)
[src]
Clears the map, removing all key-stream pairs. Keeps the allocated memory for reuse.
Examples
use tokio::stream::{StreamMap, pending}; let mut a = StreamMap::new(); a.insert(1, pending::<i32>()); a.clear(); assert!(a.is_empty());
pub fn insert(&mut self, k: K, stream: V) -> Option<V> where
K: Hash + Eq,
[src]
K: Hash + Eq,
Insert a key-stream pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the new stream
replaces the old
one and the old stream is returned.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); assert!(map.insert(37, pending::<i32>()).is_none()); assert!(!map.is_empty()); map.insert(37, pending()); assert!(map.insert(37, pending()).is_some());
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where
K: Borrow<Q>,
Q: Hash + Eq,
[src]
K: Borrow<Q>,
Q: Hash + Eq,
Removes a key from the map, returning the stream at the key if the key was previously in the map.
The key may be any borrowed form of the map’s key type, but Hash
and
Eq
on the borrowed form must match those for the key type.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); map.insert(1, pending::<i32>()); assert!(map.remove(&1).is_some()); assert!(map.remove(&1).is_none());
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where
K: Borrow<Q>,
Q: Hash + Eq,
[src]
K: Borrow<Q>,
Q: Hash + Eq,
Returns true
if the map contains a stream for the specified key.
The key may be any borrowed form of the map’s key type, but Hash
and
Eq
on the borrowed form must match those for the key type.
Examples
use tokio::stream::{StreamMap, pending}; let mut map = StreamMap::new(); map.insert(1, pending::<i32>()); assert_eq!(map.contains_key(&1), true); assert_eq!(map.contains_key(&2), false);
Trait Implementations
impl<K: Debug, V: Debug> Debug for StreamMap<K, V>
[src]
impl<K: Default, V: Default> Default for StreamMap<K, V>
[src]
impl<K, V> Stream for StreamMap<K, V> where
K: Clone + Unpin,
V: Stream + Unpin,
[src]
K: Clone + Unpin,
V: Stream + Unpin,
Auto Trait Implementations
impl<K, V> RefUnwindSafe for StreamMap<K, V> where
K: RefUnwindSafe,
V: RefUnwindSafe,
K: RefUnwindSafe,
V: RefUnwindSafe,
impl<K, V> Send for StreamMap<K, V> where
K: Send,
V: Send,
K: Send,
V: Send,
impl<K, V> Sync for StreamMap<K, V> where
K: Sync,
V: Sync,
K: Sync,
V: Sync,
impl<K, V> Unpin for StreamMap<K, V> where
K: Unpin,
V: Unpin,
K: Unpin,
V: Unpin,
impl<K, V> UnwindSafe for StreamMap<K, V> where
K: UnwindSafe,
V: UnwindSafe,
K: UnwindSafe,
V: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut Tⓘ
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<St> StreamExt for St where
St: Stream + ?Sized,
[src]
St: Stream + ?Sized,
fn next(&mut self) -> Next<'_, Self> where
Self: Unpin,
[src]
Self: Unpin,
fn try_next<T, E>(&mut self) -> TryNext<'_, Self> where
Self: Stream<Item = Result<T, E>> + Unpin,
[src]
Self: Stream<Item = Result<T, E>> + Unpin,
fn map<T, F>(self, f: F) -> Map<Self, F> where
F: FnMut(Self::Item) -> T,
Self: Sized,
[src]
F: FnMut(Self::Item) -> T,
Self: Sized,
fn merge<U>(self, other: U) -> Merge<Self, U> where
U: Stream<Item = Self::Item>,
Self: Sized,
[src]
U: Stream<Item = Self::Item>,
Self: Sized,
fn filter<F>(self, f: F) -> Filter<Self, F> where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
[src]
F: FnMut(&Self::Item) -> bool,
Self: Sized,
fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F> where
F: FnMut(Self::Item) -> Option<T>,
Self: Sized,
[src]
F: FnMut(Self::Item) -> Option<T>,
Self: Sized,
fn fuse(self) -> Fuse<Self> where
Self: Sized,
[src]
Self: Sized,
fn take(self, n: usize) -> Take<Self> where
Self: Sized,
[src]
Self: Sized,
fn take_while<F>(self, f: F) -> TakeWhile<Self, F> where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
[src]
F: FnMut(&Self::Item) -> bool,
Self: Sized,
fn skip(self, n: usize) -> Skip<Self> where
Self: Sized,
[src]
Self: Sized,
fn skip_while<F>(self, f: F) -> SkipWhile<Self, F> where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
[src]
F: FnMut(&Self::Item) -> bool,
Self: Sized,
fn all<F>(&mut self, f: F) -> AllFuture<'_, Self, F> where
Self: Unpin,
F: FnMut(Self::Item) -> bool,
[src]
Self: Unpin,
F: FnMut(Self::Item) -> bool,
fn any<F>(&mut self, f: F) -> AnyFuture<'_, Self, F> where
Self: Unpin,
F: FnMut(Self::Item) -> bool,
[src]
Self: Unpin,
F: FnMut(Self::Item) -> bool,
fn chain<U>(self, other: U) -> Chain<Self, U> where
U: Stream<Item = Self::Item>,
Self: Sized,
[src]
U: Stream<Item = Self::Item>,
Self: Sized,
fn fold<B, F>(self, init: B, f: F) -> FoldFuture<Self, B, F> where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
[src]
Self: Sized,
F: FnMut(B, Self::Item) -> B,
fn collect<T>(self) -> Collect<Self, T> where
T: FromStream<Self::Item>,
Self: Sized,
[src]
T: FromStream<Self::Item>,
Self: Sized,
fn timeout(self, duration: Duration) -> Timeout<Self> where
Self: Sized,
[src]
Self: Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,