Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use crate::convert::*;
use crate::folded_multiply::*;
use core::hash::Hasher;

///This constant come from Kunth's prng (Empirically it works better than those from splitmix32).
const MULTIPLE: u64 = crate::random_state::MULTIPLE;
const INCREMENT: u64 = 1442695040888963407;
const ROT: u32 = 23; //17

/// A `Hasher` for hashing an arbitrary stream of bytes.
///
/// Instances of [`AHasher`] represent state that is updated while hashing data.
///
/// Each method updates the internal state based on the new data provided. Once
/// all of the data has been provided, the resulting hash can be obtained by calling
/// `finish()`
///
/// [Clone] is also provided in case you wish to calculate hashes for two different items that
/// start with the same data.
///
#[derive(Debug, Clone)]
pub struct AHasher {
    buffer: u64,
    pad: u64,
    updates: u32,
}

impl AHasher {
    /// Creates a new hasher keyed to the provided key.
    #[inline]
    pub fn new_with_keys(key1: u64, key2: u64) -> AHasher {
        AHasher {
            buffer: key1,
            pad: key2,
            updates: 0,
        }
    }

    #[cfg(test)]
    pub(crate) fn test_with_keys(key1: u64, key2: u64) -> AHasher {
        use crate::random_state::scramble_keys;
        let (k1, k2) = scramble_keys(key1, key2);
        AHasher { buffer: k1, pad: k2, updates: 0 }
    }

    /// This update function has the goal of updating the buffer with a single multiply
    /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
    /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
    /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
    /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
    /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
    /// subsequent update that also differed in this bit could result in a predictable collision.
    ///
    /// This version avoids this vulnerability while still only using a single multiply. It takes advantage
    /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
    /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
    /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
    /// Then the upper bits are added to the lower bits to produce a single 64 bit result.
    ///
    /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
    /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
    /// If the multiple is chosen well, this creates a long period, decent quality PRNG.
    /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
    /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
    ///
    /// This is impervious to attack because every bit buffer at the end is dependent on every bit in
    /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
    /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
    /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
    /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
    /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
    /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
    /// attacker somehow knew part of (but not all) the contents of the buffer before hand,
    /// they would not be able to predict any of the bits in the buffer at the end.
    #[inline(always)]
    fn update(&mut self, new_data: u64) {
        self.updates += 1;
        self.buffer = (new_data ^ self.buffer).folded_multiply(MULTIPLE);
    }

    /// This update function updates the buffer with the new information in a way that can't be canceled
    /// with a subsequent update without knowledge of the content of the buffer prior to the update.
    ///
    /// To achieve this the input needs to be modified in an unpredictable (to an attacker) way before it is
    /// combined with the value in the buffer. This is done by xoring it with `key`.
    ///
    /// Other hashes such as murmurhash have taken that approach but were found vulnerable to attack.
    /// The attack was based on the idea of reversing any pre-mixing (Which is necessarily reversible otherwise
    /// bits would be lost) then placing a difference in the highest bit before the multiply. Because a multiply
    /// can never affect the bits to the right of it, a subsequent update that also only differed in the high
    /// order bit could cancel out the change to `buffer` from the first update. This allowed murmurhash to be
    /// attacked. In this update function aHash avoids this vulnerability by rotating and performing a second
    /// multiply.
    ///
    /// This makes it impossible for an attacker to place a single bit difference between
    /// two blocks so as to cancel each other. (While the transform is still reversible if you know the key)
    ///
    /// This is similar to the above update function but is designed to run in a loop
    /// that will be unrolled and vectorized. So instead of using the buffer, it uses a 'key' that it updates
    /// and returns. The buffer is only xored at the end. This structure is so that when the method is inlined,
    /// the compiler will unroll any loop this gets placed in and the loop can be automatically vectorized
    /// and the rotates, xors, and multiplies can be paralleled.
    ///
    /// The key needs to be incremented between consecutive calls to prevent (a,b) from hashing the same as (b,a).
    /// The adding of the increment is moved to the bottom rather than the top. This allows one less add to be
    /// performed overall, but more importantly, it follows the multiply, which is expensive. So the CPU can
    /// run another operation afterwords if does not depend on the output of the multiply operation.
    #[inline(always)]
    fn ordered_update(&mut self, new_data: u64, key: u64) -> u64 {
        self.buffer ^= (new_data ^ key)
            .wrapping_mul(MULTIPLE)
            .rotate_left(ROT)
            .wrapping_mul(MULTIPLE);
        key.wrapping_add(INCREMENT)
    }
}

/// Provides methods to hash all of the primitive types.
impl Hasher for AHasher {
    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.update(i as u64);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.update(i as u64);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.update(i as u64);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.update(i as u64);
    }

    #[inline]
    fn write_u128(&mut self, i: u128) {
        let data: [u64; 2] = i.convert();
        self.update(data[0]);
        self.update(data[1]);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.write_u64(i as u64);
    }

    #[inline]
    fn write(&mut self, input: &[u8]) {
        let mut data = input;
        let length = data.len() as u64;
        //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
        self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
        //A 'binary search' on sizes reduces the number of comparisons.
        if data.len() > 8 {
            if data.len() > 16 {
                let tail = data.read_last_u64();
                let mut key: u64 = self.buffer;
                while data.len() > 8 {
                    let (val, rest) = data.read_u64();
                    key = self.ordered_update(val, key);
                    data = rest;
                }
                self.updates += 1; //avoids updating for every ordered update
                self.update(tail);
            } else {
                self.update(data.read_u64().0);
                self.update(data.read_last_u64());
            }
        } else {
            if data.len() >= 2 {
                if data.len() >= 4 {
                    let block: [u32; 2] = [data.read_u32().0, data.read_last_u32()];
                    self.update(block.convert());
                } else {
                    let value = [data.read_u16().0 as u32, data[data.len() - 1] as u32];
                    self.update(value.convert());
                }
            } else {
                let value = if data.len() > 0 {
                    data[0] //len 1
                } else {
                    0
                };
                self.update(value as u64);
            }
        }
    }
    #[inline]
    fn finish(&self) -> u64 {
        if self.updates == 1 {
            self.buffer
        } else {
            let rot = (self.pad & 63) as u32;
            (self.buffer ^ self.pad).rotate_left(rot)
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::convert::Convert;
    use crate::fallback_hash::*;

    #[test]
    fn test_hash() {
        let mut hasher = AHasher::new_with_keys(0, 0);
        let value: u64 = 1 << 32;
        hasher.update(value);
        let result = hasher.buffer;
        let mut hasher = AHasher::new_with_keys(0, 0);
        let value2: u64 = 1;
        hasher.update(value2);
        let result2 = hasher.buffer;
        let result: [u8; 8] = result.convert();
        let result2: [u8; 8] = result2.convert();
        assert_ne!(hex::encode(result), hex::encode(result2));
    }

    #[test]
    fn test_conversion() {
        let input: &[u8] = "dddddddd".as_bytes();
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }
}