1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Generating random samples from probability distributions
//!
//! This module is the home of the [`Distribution`] trait and several of its
//! implementations. It is the workhorse behind some of the convenient
//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`] and of course
//! [`Rng::sample`].
//!
//! Abstractly, a [probability distribution] describes the probability of
//! occurrence of each value in its sample space.
//!
//! More concretely, an implementation of `Distribution<T>` for type `X` is an
//! algorithm for choosing values from the sample space (a subset of `T`)
//! according to the distribution `X` represents, using an external source of
//! randomness (an RNG supplied to the `sample` function).
//!
//! A type `X` may implement `Distribution<T>` for multiple types `T`.
//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
//! but it may have internal parameters set at construction time (for example,
//! [`Uniform`] allows specification of its sample space as a range within `T`).
//!
//!
//! # The `Standard` distribution
//!
//! The [`Standard`] distribution is important to mention. This is the
//! distribution used by [`Rng::gen`] and represents the "default" way to
//! produce a random value for many different types, including most primitive
//! types, tuples, arrays, and a few derived types. See the documentation of
//! [`Standard`] for more details.
//!
//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
//! possible to generate type `T` with [`Rng::gen`], and by extension also
//! with the [`random`] function.
//!
//! ## Random characters
//!
//! [`Alphanumeric`] is a simple distribution to sample random letters and
//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
//! `char`.
//!
//!
//! # Uniform numeric ranges
//!
//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
//! more specialised: it supports fewer target types, but allows the sample
//! space to be specified as an arbitrary range within its target type `T`.
//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
//!
//! Values may be sampled from this distribution using [`Rng::sample(Range)`] or
//! by creating a distribution object with [`Uniform::new`],
//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
//! known at compile time it is typically faster to reuse an existing
//! `Uniform` object than to call [`Rng::sample(Range)`].
//!
//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
//! although this is less straightforward than for [`Standard`] (see the
//! documentation in the [`uniform`] module). Doing so enables generation of
//! values of type `T` with  [`Rng::sample(Range)`].
//!
//! ## Open and half-open ranges
//!
//! There are surprisingly many ways to uniformly generate random floats. A
//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
//! [`Standard`] documentation for more details.
//!
//! # Non-uniform sampling
//!
//! Sampling a simple true/false outcome with a given probability has a name:
//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//!
//! For weighted sampling from a sequence of discrete values, use the
//! [`WeightedIndex`] distribution.
//!
//! This crate no longer includes other non-uniform distributions; instead
//! it is recommended that you use either [`rand_distr`] or [`statrs`].
//!
//!
//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs

//! [`random`]: crate::random
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`statrs`]: https://crates.io/crates/statrs

use crate::Rng;
use core::iter;

pub use self::bernoulli::{Bernoulli, BernoulliError};
pub use self::float::{Open01, OpenClosed01};
pub use self::other::Alphanumeric;
#[doc(inline)] pub use self::uniform::Uniform;

#[cfg(feature = "alloc")]
pub use self::weighted_index::{WeightedError, WeightedIndex};

mod bernoulli;
pub mod uniform;

#[deprecated(since = "0.8.0", note = "use rand::distributions::{WeightedIndex, WeightedError} instead")]
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub mod weighted;
#[cfg(feature = "alloc")] mod weighted_index;

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};

mod float;
#[doc(hidden)]
pub mod hidden_export {
    pub use super::float::IntoFloat; // used by rand_distr
}
mod integer;
mod other;
mod utils;

/// Types (distributions) that can be used to create a random instance of `T`.
///
/// It is possible to sample from a distribution through both the
/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
/// produces an iterator that samples from the distribution.
///
/// All implementations are expected to be immutable; this has the significant
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
/// Implementations are typically expected to be portable with reproducible
/// results when used with a PRNG with fixed seed; see the
/// [portability chapter](https://rust-random.github.io/book/portability.html)
/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
/// type requires different sampling on 32-bit and 64-bit machines.
///
/// [`sample_iter`]: Distribution::method.sample_iter
pub trait Distribution<T> {
    /// Generate a random value of `T`, using `rng` as the source of randomness.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;

    /// Create an iterator that generates random values of `T`, using `rng` as
    /// the source of randomness.
    ///
    /// Note that this function takes `self` by value. This works since
    /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
    /// however borrowing is not automatic hence `distr.sample_iter(...)` may
    /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
    /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::thread_rng;
    /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
    ///
    /// let mut rng = thread_rng();
    ///
    /// // Vec of 16 x f32:
    /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
    ///
    /// // String:
    /// let s: String = Alphanumeric
    ///     .sample_iter(&mut rng)
    ///     .take(7)
    ///     .map(char::from)
    ///     .collect();
    ///
    /// // Dice-rolling:
    /// let die_range = Uniform::new_inclusive(1, 6);
    /// let mut roll_die = die_range.sample_iter(&mut rng);
    /// while roll_die.next().unwrap() != 6 {
    ///     println!("Not a 6; rolling again!");
    /// }
    /// ```
    fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
    where
        R: Rng,
        Self: Sized,
    {
        DistIter {
            distr: self,
            rng,
            phantom: ::core::marker::PhantomData,
        }
    }
}

impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
        (*self).sample(rng)
    }
}


/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
pub struct DistIter<D, R, T> {
    distr: D,
    rng: R,
    phantom: ::core::marker::PhantomData<T>,
}

impl<D, R, T> Iterator for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
    type Item = T;

    #[inline(always)]
    fn next(&mut self) -> Option<T> {
        // Here, self.rng may be a reference, but we must take &mut anyway.
        // Even if sample could take an R: Rng by value, we would need to do this
        // since Rng is not copyable and we cannot enforce that this is "reborrowable".
        Some(self.distr.sample(&mut self.rng))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::max_value(), None)
    }
}

impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
}

#[cfg(features = "nightly")]
impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
}


/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
/// range appropriate to the type.
///
/// ## Provided implementations
///
/// Assuming the provided `Rng` is well-behaved, these implementations
/// generate values with the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
///   over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
///   code points in the range `0...0x10_FFFF`, except for the range
///   `0xD800...0xDFFF` (the surrogate code points). This includes
///   unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
///   half-open range `[0, 1)`. See notes below.
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
///   normal integer variants.
///
/// The `Standard` distribution also supports generation of the following
/// compound types where all component types are supported:
///
/// *   Tuples (up to 12 elements): each element is generated sequentially.
/// *   Arrays (up to 32 elements): each element is generated sequentially;
///     see also [`Rng::fill`] which supports arbitrary array length for integer
///     types and tends to be faster for `u32` and smaller types.
/// *   `Option<T>` first generates a `bool`, and if true generates and returns
///     `Some(value)` where `value: T`, otherwise returning `None`.
///
/// ## Custom implementations
///
/// The [`Standard`] distribution may be implemented for user types as follows:
///
/// ```
/// # #![allow(dead_code)]
/// use rand::Rng;
/// use rand::distributions::{Distribution, Standard};
///
/// struct MyF32 {
///     x: f32,
/// }
///
/// impl Distribution<MyF32> for Standard {
///     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
///         MyF32 { x: rng.gen() }
///     }
/// }
/// ```
///
/// ## Example usage
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Standard;
///
/// let val: f32 = StdRng::from_entropy().sample(Standard);
/// println!("f32 from [0, 1): {}", val);
/// ```
///
/// # Floating point implementation
/// The floating point implementations for `Standard` generate a random value in
/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
///
/// All values that can be generated are of the form `n * ε/2`. For `f32`
/// the 24 most significant random bits of a `u32` are used and for `f64` the
/// 53 most significant bits of a `u64` are used. The conversion uses the
/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
///
/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
/// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from
/// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit
/// less precision but may perform faster on some architectures (on modern Intel
/// CPUs all methods have approximately equal performance).
///
/// [`Uniform`]: uniform::Uniform
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Standard;


#[cfg(test)]
mod tests {
    use super::{Distribution, Uniform};
    use crate::Rng;

    #[test]
    fn test_distributions_iter() {
        use crate::distributions::Open01;
        let mut rng = crate::test::rng(210);
        let distr = Open01;
        let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
        let mut sum: f32 = 0.;
        for _ in 0..100 {
            sum += iter.next().unwrap();
        }
        assert!(0. < sum && sum < 100.);
    }

    #[test]
    fn test_make_an_iter() {
        fn ten_dice_rolls_other_than_five<'a, R: Rng>(
            rng: &'a mut R,
        ) -> impl Iterator<Item = i32> + 'a {
            Uniform::new_inclusive(1, 6)
                .sample_iter(rng)
                .filter(|x| *x != 5)
                .take(10)
        }

        let mut rng = crate::test::rng(211);
        let mut count = 0;
        for val in ten_dice_rolls_other_than_five(&mut rng) {
            assert!(val >= 1 && val <= 6 && val != 5);
            count += 1;
        }
        assert_eq!(count, 10);
    }
}