1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright 2019 TiKV Project Authors. Licensed under MIT or Apache-2.0.

//! Clocks

#[cfg(feature = "standard-clock")]
use futures_timer::Delay;
#[cfg(feature = "standard-clock")]
use std::time::Instant;
use std::{
    convert::TryInto,
    fmt::Debug,
    future::Future,
    marker::Unpin,
    mem,
    ops::{Add, Sub},
    pin::Pin,
    sync::{
        atomic::{AtomicU64, Ordering},
        Arc, Mutex,
    },
    task::{Context, Poll, Waker},
    time::Duration,
};

/// A `Clock` controls the passing of time.
///
/// [`Limiter`](crate::Limiter) uses [`sleep()`](Clock::sleep()) to impose speed
/// limit, and it relies on the current and past timestamps to determine how
/// long to sleep. Both of these time-related features are encapsulated into
/// this `Clock` trait.
///
/// # Implementing
///
/// The [`StandardClock`] should be enough in most situation. However, these are
/// cases for a custom clock, e.g. use a coarse clock instead of the standard
/// high-precision clock, or use a specialized future associated with an
/// executor instead of the generic `futures-timer`.
///
/// Types implementing `Clock` must be cheap to clone (e.g. using `Arc`), and
/// the default value must be ready to use.
pub trait Clock: Clone + Default {
    /// Type to represent a point of time.
    ///
    /// Subtracting two instances should return the duration elapsed between
    /// them. The subtraction must never block or panic when they are properly
    /// ordered.
    type Instant: Copy + Sub<Output = Duration>;

    /// Future type returned by [`sleep()`](Clock::sleep()).
    type Delay: Future<Output = ()> + Unpin;

    /// Returns the current time instant. It should be monotonically increasing,
    /// but not necessarily high-precision or steady.
    ///
    /// This function must never block or panic.
    fn now(&self) -> Self::Instant;

    /// Asynchronously sleeps the current task for the given duration.
    ///
    /// This method should return a future which fulfilled as `()` after a
    /// duration of `dur`. It should *not* block the current thread.
    ///
    /// `sleep()` is often called with a duration of 0 s. This should result in
    /// a future being resolved immediately.
    fn sleep(&self, dur: Duration) -> Self::Delay;
}

/// A `BlockingClock` is a [`Clock`] which supports synchronous sleeping.
pub trait BlockingClock: Clock {
    /// Sleeps and blocks the current thread for the given duration.
    fn blocking_sleep(&self, dur: Duration);
}

/// The physical clock using [`std::time::Instant`].
///
/// The sleeping future is based on [`futures-timer`]. Blocking sleep uses
/// [`std::thread::sleep()`].
///
/// [`futures-timer`]: https://docs.rs/futures-timer/
#[cfg(feature = "standard-clock")]
#[derive(Copy, Clone, Debug, Default)]
pub struct StandardClock;

#[cfg(feature = "standard-clock")]
impl Clock for StandardClock {
    type Instant = Instant;
    type Delay = Delay;

    fn now(&self) -> Self::Instant {
        Instant::now()
    }

    fn sleep(&self, dur: Duration) -> Self::Delay {
        Delay::new(dur)
    }
}

#[cfg(feature = "standard-clock")]
impl BlockingClock for StandardClock {
    fn blocking_sleep(&self, dur: Duration) {
        std::thread::sleep(dur);
    }
}

/// Number of nanoseconds since an arbitrary epoch.
///
/// This is the instant type of [`ManualClock`].
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Nanoseconds(pub u64);

impl Sub for Nanoseconds {
    type Output = Duration;
    fn sub(self, other: Self) -> Duration {
        Duration::from_nanos(self.0 - other.0)
    }
}

impl Add<Duration> for Nanoseconds {
    type Output = Self;
    fn add(self, other: Duration) -> Self {
        let dur: u64 = other
            .as_nanos()
            .try_into()
            .expect("cannot increase more than 2^64 ns");
        Self(self.0 + dur)
    }
}

/// The future returned by [`ManualClock`]`::sleep()`.
#[derive(Debug)]
pub struct ManualDelay {
    clock: Arc<ManualClockContent>,
    timeout: Nanoseconds,
}

impl Future for ManualDelay {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let now = self.clock.now();
        if now >= self.timeout {
            Poll::Ready(())
        } else {
            self.clock.register(cx);
            Poll::Pending
        }
    }
}

/// Internal, shared part of [`ManualClock`]. `ManualClock` itself is an `Arc`
/// of `ManualClockContent`.
#[derive(Default, Debug)]
struct ManualClockContent {
    now: AtomicU64,
    wakers: Mutex<Vec<Waker>>,
}

impl ManualClockContent {
    fn now(&self) -> Nanoseconds {
        Nanoseconds(self.now.load(Ordering::SeqCst))
    }

    fn set_time(&self, time: u64) {
        let old_time = self.now.swap(time, Ordering::SeqCst);
        assert!(old_time <= time, "cannot move the time backwards");

        let wakers = { mem::take(&mut *self.wakers.lock().unwrap()) };
        wakers.into_iter().for_each(Waker::wake);
    }

    fn register(&self, cx: &mut Context<'_>) {
        self.wakers.lock().unwrap().push(cx.waker().clone());
    }
}

/// A [`Clock`] where the passage of time can be manually controlled.
///
/// This type is mainly used for testing behavior of speed limiter only.
///
/// This clock only supports up to 2<sup>64</sup> ns (about 584.5 years).
///
/// # Examples
///
/// ```rust
/// use async_speed_limit::clock::{Clock, ManualClock, Nanoseconds};
///
/// let clock = ManualClock::new();
/// assert_eq!(clock.now(), Nanoseconds(0));
/// clock.set_time(Nanoseconds(1_000_000_000));
/// assert_eq!(clock.now(), Nanoseconds(1_000_000_000));
/// ```
#[derive(Default, Debug, Clone)]
pub struct ManualClock(Arc<ManualClockContent>);

impl ManualClock {
    /// Creates a new clock with time set to 0.
    pub fn new() -> Self {
        Self::default()
    }

    /// Set the current time of this clock to the given value.
    ///
    /// # Panics
    ///
    /// Since [`now()`](Clock::now()) must be monotonically increasing, if the
    /// new time is less than the previous time, this function will panic.
    pub fn set_time(&self, time: Nanoseconds) {
        self.0.set_time(time.0);
    }
}

impl Clock for ManualClock {
    type Instant = Nanoseconds;
    type Delay = ManualDelay;

    fn now(&self) -> Self::Instant {
        self.0.now()
    }

    fn sleep(&self, dur: Duration) -> Self::Delay {
        ManualDelay {
            timeout: self.0.now() + dur,
            clock: self.0.clone(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures_executor::LocalPool;
    use futures_util::task::SpawnExt;
    use std::sync::{
        atomic::{AtomicUsize, Ordering},
        Arc,
    };

    #[test]
    fn manual_clock_basics() {
        let clock = ManualClock::new();
        let t1 = clock.now();
        assert_eq!(t1, Nanoseconds(0));

        clock.set_time(Nanoseconds(1_000_000_000));

        let t2 = clock.now();
        assert_eq!(t2, Nanoseconds(1_000_000_000));
        assert_eq!(t2 - t1, Duration::from_secs(1));

        clock.clone().set_time(Nanoseconds(1_000_000_007));

        let t3 = clock.now();
        assert_eq!(t3, Nanoseconds(1_000_000_007));
        assert_eq!(t3 - t2, Duration::from_nanos(7));
    }

    #[test]
    fn manual_clock_sleep() {
        let counter = Arc::new(AtomicUsize::new(0));
        let clock = ManualClock::new();
        let mut pool = LocalPool::new();
        let sp = pool.spawner();

        // expected sequence:
        //
        //   t=0    .     .
        //   t=1    .     .
        //   t=2    +1    .
        //   t=3    .     +16
        //   t=4    .     +64
        //   t=5    +4    .

        sp.spawn({
            let counter = counter.clone();
            let clock = clock.clone();
            async move {
                clock.sleep(Duration::from_secs(2)).await;
                counter.fetch_add(1, Ordering::Relaxed);
                clock.sleep(Duration::from_secs(3)).await;
                counter.fetch_add(4, Ordering::Relaxed);
            }
        })
        .unwrap();

        sp.spawn({
            let counter = counter.clone();
            let clock = clock.clone();
            async move {
                clock.sleep(Duration::from_secs(3)).await;
                counter.fetch_add(16, Ordering::Relaxed);
                clock.sleep(Duration::from_secs(1)).await;
                counter.fetch_add(64, Ordering::Relaxed);
            }
        })
        .unwrap();

        clock.set_time(Nanoseconds(0));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 0);

        clock.set_time(Nanoseconds(1_000_000_000));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 0);

        clock.set_time(Nanoseconds(2_000_000_000));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 1);

        clock.set_time(Nanoseconds(3_000_000_000));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 17);

        clock.set_time(Nanoseconds(4_000_000_000));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 81);

        clock.set_time(Nanoseconds(5_000_000_000));
        pool.run_until_stalled();
        assert_eq!(counter.load(Ordering::Relaxed), 85);

        // all futures should be exhausted.
        assert!(!pool.try_run_one());
    }

    #[test]
    #[cfg(feature = "standard-clock")]
    fn standard_clock() {
        let res = futures_executor::block_on(async {
            let init = StandardClock.now();
            StandardClock.sleep(Duration::from_secs(1)).await;
            StandardClock.now() - init
        });
        assert!(
            Duration::from_millis(900) <= res && res <= Duration::from_millis(1100),
            "standard clock slept too long at {:?}",
            res
        )
    }
}