1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
//! Functions and structs related to process information //! //! The primary source of data for functions in this module is the files in a `/proc/<pid>/` //! directory. If you have a process ID, you can use //! [`Process::new(pid)`](struct.Process.html#method.new), otherwise you can get a //! list of all running processes using [`all_processes()`](fn.all_processes.html). //! //! In case you have procfs filesystem mounted to a location other than `/proc`, //! use [`Process::new_with_root()`](struct.Process.html#method.new_with_root). //! //! # Examples //! //! Here's a small example that prints out all processes that are running on the same tty as the calling //! process. This is very similar to what "ps" does in its default mode. You can run this example //! yourself with: //! //! > cargo run --example=ps //! //! ```rust //! let me = procfs::process::Process::myself().unwrap(); //! let tps = procfs::ticks_per_second().unwrap(); //! //! println!("{: >5} {: <8} {: >8} {}", "PID", "TTY", "TIME", "CMD"); //! //! let tty = format!("pty/{}", me.stat.tty_nr().1); //! for prc in procfs::process::all_processes().unwrap() { //! if prc.stat.tty_nr == me.stat.tty_nr { //! // total_time is in seconds //! let total_time = //! (prc.stat.utime + prc.stat.stime) as f32 / (tps as f32); //! println!( //! "{: >5} {: <8} {: >8} {}", //! prc.stat.pid, tty, total_time, prc.stat.comm //! ); //! } //! } //! ``` //! //! Here's a simple example of how you could get the total memory used by the current process. //! There are several ways to do this. For a longer example, see the `examples/self_memory.rs` //! file in the git repository. You can run this example with: //! //! > cargo run --example=self_memory //! //! ```rust //! # use procfs::process::Process; //! let me = Process::myself().unwrap(); //! let page_size = procfs::page_size().unwrap() as u64; //! //! println!("== Data from /proc/self/stat:"); //! println!("Total virtual memory used: {} bytes", me.stat.vsize); //! println!("Total resident set: {} pages ({} bytes)", me.stat.rss, me.stat.rss as u64 * page_size); //! ``` use super::*; use crate::from_iter; use std::ffi::OsString; use std::io::{self, Read}; #[cfg(unix)] use std::os::linux::fs::MetadataExt; use std::path::PathBuf; use std::str::FromStr; mod limit; pub use limit::*; mod stat; pub use stat::*; mod mount; pub use mount::*; mod status; pub use status::*; // provide a type-compatible st_uid for windows #[cfg(windows)] trait FakeMedatadataExt { fn st_uid(&self) -> u32; } #[cfg(windows)] impl FakeMedatadataExt for std::fs::Metadata { fn st_uid(&self) -> u32 { panic!() } } bitflags! { /// Kernel flags for a process /// /// See also the [Stat::flags()] method. pub struct StatFlags: u32 { /// I am an IDLE thread const PF_IDLE = 0x0000_0002; /// Getting shut down const PF_EXITING = 0x0000_0004; /// PI exit done on shut down const PF_EXITPIDONE = 0x0000_0008; /// I'm a virtual CPU const PF_VCPU = 0x0000_0010; /// I'm a workqueue worker const PF_WQ_WORKER = 0x0000_0020; /// Forked but didn't exec const PF_FORKNOEXEC = 0x0000_0040; /// Process policy on mce errors; const PF_MCE_PROCESS = 0x0000_0080; /// Used super-user privileges const PF_SUPERPRIV = 0x0000_0100; /// Dumped core const PF_DUMPCORE = 0x0000_0200; /// Killed by a signal const PF_SIGNALED = 0x0000_0400; ///Allocating memory const PF_MEMALLOC = 0x0000_0800; /// set_user() noticed that RLIMIT_NPROC was exceeded const PF_NPROC_EXCEEDED = 0x0000_1000; /// If unset the fpu must be initialized before use const PF_USED_MATH = 0x0000_2000; /// Used async_schedule*(), used by module init const PF_USED_ASYNC = 0x0000_4000; /// This thread should not be frozen const PF_NOFREEZE = 0x0000_8000; /// Frozen for system suspend const PF_FROZEN = 0x0001_0000; /// I am kswapd const PF_KSWAPD = 0x0002_0000; /// All allocation requests will inherit GFP_NOFS const PF_MEMALLOC_NOFS = 0x0004_0000; /// All allocation requests will inherit GFP_NOIO const PF_MEMALLOC_NOIO = 0x0008_0000; /// Throttle me less: I clean memory const PF_LESS_THROTTLE = 0x0010_0000; /// I am a kernel thread const PF_KTHREAD = 0x0020_0000; /// Randomize virtual address space const PF_RANDOMIZE = 0x0040_0000; /// Allowed to write to swap const PF_SWAPWRITE = 0x0080_0000; /// Stalled due to lack of memory const PF_MEMSTALL = 0x0100_0000; /// I'm an Usermodehelper process const PF_UMH = 0x0200_0000; /// Userland is not allowed to meddle with cpus_allowed const PF_NO_SETAFFINITY = 0x0400_0000; /// Early kill for mce process policy const PF_MCE_EARLY = 0x0800_0000; /// All allocation request will have _GFP_MOVABLE cleared const PF_MEMALLOC_NOCMA = 0x1000_0000; /// Thread belongs to the rt mutex tester const PF_MUTEX_TESTER = 0x2000_0000; /// Freezer should not count it as freezable const PF_FREEZER_SKIP = 0x4000_0000; /// This thread called freeze_processes() and should not be frozen const PF_SUSPEND_TASK = 0x8000_0000; } } bitflags! { /// See the [coredump_filter()](struct.Process.html#method.coredump_filter) method. pub struct CoredumpFlags: u32 { const ANONYMOUS_PRIVATE_MAPPINGS = 0x01; const ANONYMOUS_SHARED_MAPPINGS = 0x02; const FILEBACKED_PRIVATE_MAPPINGS = 0x04; const FILEBACKED_SHARED_MAPPINGS = 0x08; const ELF_HEADERS = 0x10; const PROVATE_HUGEPAGES = 0x20; const SHARED_HUGEPAGES = 0x40; const PRIVATE_DAX_PAGES = 0x80; const SHARED_DAX_PAGES = 0x100; } } bitflags! { /// The mode (read/write permissions) for an open file descriptor pub struct FDPermissions: u32 { const READ = libc::S_IRUSR; const WRITE = libc::S_IWUSR; const EXECUTE = libc::S_IXUSR; } } //impl<'a, 'b, T> ProcFrom<&'b mut T> for u32 where T: Iterator<Item=&'a str> + Sized, 'a: 'b { // fn from(i: &'b mut T) -> u32 { // let s = i.next().unwrap(); // u32::from_str_radix(s, 10).unwrap() // } //} //impl<'a> ProcFrom<&'a str> for u32 { // fn from(s: &str) -> Self { // u32::from_str_radix(s, 10).unwrap() // } //} //fn from_iter<'a, I: Iterator<Item=&'a str>>(i: &mut I) -> u32 { // u32::from_str_radix(i.next().unwrap(), 10).unwrap() //} /// Represents the state of a process. #[derive(Debug, Clone, Copy, Eq, PartialEq)] pub enum ProcState { /// Running (R) Running, /// Sleeping in an interruptible wait (S) Sleeping, /// Waiting in uninterruptible disk sleep (D) Waiting, /// Zombie (Z) Zombie, /// Stopped (on a signal) (T) /// /// Or before Linux 2.6.33, trace stopped Stopped, /// Tracing stop (t) (Linux 2.6.33 onward) Tracing, /// Dead (X) Dead, /// Wakekill (K) (Linux 2.6.33 to 3.13 only) Wakekill, /// Waking (W) (Linux 2.6.33 to 3.13 only) Waking, /// Parked (P) (Linux 3.9 to 3.13 only) Parked, /// Idle (I) Idle, } impl ProcState { pub fn from_char(c: char) -> Option<ProcState> { match c { 'R' => Some(ProcState::Running), 'S' => Some(ProcState::Sleeping), 'D' => Some(ProcState::Waiting), 'Z' => Some(ProcState::Zombie), 'T' => Some(ProcState::Stopped), 't' => Some(ProcState::Tracing), 'X' | 'x' => Some(ProcState::Dead), 'K' => Some(ProcState::Wakekill), 'W' => Some(ProcState::Waking), 'P' => Some(ProcState::Parked), 'I' => Some(ProcState::Idle), _ => None, } } } impl FromStr for ProcState { type Err = ProcError; fn from_str(s: &str) -> Result<ProcState, ProcError> { ProcState::from_char(expect!(s.chars().next(), "empty string")) .ok_or_else(|| build_internal_error!("failed to convert")) } } //impl<'a, 'b, T> ProcFrom<&'b mut T> for ProcState where T: Iterator<Item=&'a str>, 'a: 'b { // fn from(s: &'b mut T) -> ProcState { // ProcState::from_str(s.next().unwrap()).unwrap() // } //} /// This struct contains I/O statistics for the process, built from `/proc/<pid>/io` /// /// To construct this structure, see [Process::io()]. /// /// # Note /// /// In the current implementation, things are a bit racy on 32-bit systems: if process A /// reads process B's `/proc/<pid>/io` while process B is updating one of these 64-bit /// counters, process A could see an intermediate result. #[derive(Debug, Copy, Clone)] pub struct Io { /// Characters read /// /// The number of bytes which this task has caused to be read from storage. This is simply the /// sum of bytes which this process passed to read(2) and similar system calls. It includes /// things such as terminal I/O and is unaffected by whether or not actual physical disk I/O /// was required (the read might have been satisfied from pagecache). pub rchar: u64, /// characters written /// /// The number of bytes which this task has caused, or shall cause to be written to disk. /// Similar caveats apply here as with rchar. pub wchar: u64, /// read syscalls /// /// Attempt to count the number of write I/O operations—that is, system calls such as write(2) /// and pwrite(2). pub syscr: u64, /// write syscalls /// /// Attempt to count the number of write I/O operations—that is, system calls such as write(2) /// and pwrite(2). pub syscw: u64, /// bytes read /// /// Attempt to count the number of bytes which this process really did cause to be fetched from /// the storage layer. This is accurate for block-backed filesystems. pub read_bytes: u64, /// bytes written /// /// Attempt to count the number of bytes which this process caused to be sent to the storage layer. pub write_bytes: u64, /// Cancelled write bytes. /// /// The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes /// the file, it will in fact perform no write‐ out. But it will have been accounted as having /// caused 1MB of write. In other words: this field represents the number of bytes which this /// process caused to not happen, by truncating pagecache. A task can cause "negative" I/O too. /// If this task truncates some dirty pagecache, some I/O which another task has been accounted /// for (in its write_bytes) will not be happening. pub cancelled_write_bytes: u64, } #[derive(Debug, PartialEq, Clone)] pub enum MMapPath { /// The file that is backing the mapping. Path(PathBuf), /// The process's heap. Heap, /// The initial process's (also known as the main thread's) stack. Stack, /// A thread's stack (where the `<tid>` is a thread ID). It corresponds to the /// `/proc/<pid>/task/<tid>/` path. /// /// (since Linux 3.4) TStack(u32), /// The virtual dynamically linked shared object. Vdso, /// Shared kernel variables Vvar, /// obsolete virtual syscalls, succeeded by vdso Vsyscall, /// An anonymous mapping as obtained via mmap(2). Anonymous, /// Some other pseudo-path Other(String), } impl MMapPath { fn from(path: &str) -> ProcResult<MMapPath> { Ok(match path.trim() { "" => MMapPath::Anonymous, "[heap]" => MMapPath::Heap, "[stack]" => MMapPath::Stack, "[vdso]" => MMapPath::Vdso, "[vvar]" => MMapPath::Vvar, "[vsyscall]" => MMapPath::Vsyscall, x if x.starts_with("[stack:") => { let mut s = x[1..x.len() - 1].split(':'); let tid = from_str!(u32, expect!(s.nth(1))); MMapPath::TStack(tid) } x if x.starts_with('[') && x.ends_with(']') => { MMapPath::Other(x[1..x.len() - 1].to_string()) } x => MMapPath::Path(PathBuf::from(x)), }) } } /// Represents an entry in a `/proc/<pid>/maps` file. /// /// To construct this structure, see [Process::maps()]. #[derive(Debug, PartialEq, Clone)] pub struct MemoryMap { /// The address space in the process that the mapping occupies. pub address: (u64, u64), pub perms: String, /// The offset into the file/whatever pub offset: u64, /// The device (major, minor) pub dev: (i32, i32), /// The inode on that device /// /// 0 indicates that no inode is associated with the memory region, as would be the case with /// BSS (uninitialized data). pub inode: u64, pub pathname: MMapPath, } impl Io { pub fn from_reader<R: io::Read>(r: R) -> ProcResult<Io> { let mut map = HashMap::new(); let reader = BufReader::new(r); for line in reader.lines() { let line = line?; if line.is_empty() || !line.contains(' ') { continue; } let mut s = line.split_whitespace(); let field = expect!(s.next()); let value = expect!(s.next()); let value = from_str!(u64, value); map.insert(field[..field.len() - 1].to_string(), value); } let io = Io { rchar: expect!(map.remove("rchar")), wchar: expect!(map.remove("wchar")), syscr: expect!(map.remove("syscr")), syscw: expect!(map.remove("syscw")), read_bytes: expect!(map.remove("read_bytes")), write_bytes: expect!(map.remove("write_bytes")), cancelled_write_bytes: expect!(map.remove("cancelled_write_bytes")), }; if cfg!(test) && !map.is_empty() { panic!("io map is not empty: {:#?}", map); } Ok(io) } } /// Describes a file descriptor opened by a process. /// /// See also the [Process::fd()] method. #[derive(Clone, Debug)] pub enum FDTarget { /// A file or device Path(PathBuf), /// A socket type, with an inode Socket(u32), Net(u32), Pipe(u32), /// A file descriptor that have no corresponding inode. AnonInode(String), /// A memfd file descriptor with a name. MemFD(String), /// Some other file descriptor type, with an inode. Other(String, u32), } impl FromStr for FDTarget { type Err = ProcError; fn from_str(s: &str) -> Result<FDTarget, ProcError> { if !s.starts_with('/') && s.contains(':') { let mut s = s.split(':'); let fd_type = expect!(s.next()); match fd_type { "socket" => { let inode = expect!(s.next(), "socket inode"); let inode = expect!(u32::from_str_radix(&inode[1..inode.len() - 1], 10)); Ok(FDTarget::Socket(inode)) } "net" => { let inode = expect!(s.next(), "net inode"); let inode = expect!(u32::from_str_radix(&inode[1..inode.len() - 1], 10)); Ok(FDTarget::Net(inode)) } "pipe" => { let inode = expect!(s.next(), "pipe inode"); let inode = expect!(u32::from_str_radix(&inode[1..inode.len() - 1], 10)); Ok(FDTarget::Pipe(inode)) } "anon_inode" => Ok(FDTarget::AnonInode( expect!(s.next(), "anon inode").to_string(), )), "/memfd" => Ok(FDTarget::MemFD(expect!(s.next(), "memfd name").to_string())), x => { let inode = expect!(s.next(), "other inode"); let inode = expect!(u32::from_str_radix(&inode[1..inode.len() - 1], 10)); Ok(FDTarget::Other(x.to_string(), inode)) } } } else { Ok(FDTarget::Path(PathBuf::from(s))) } } } /// See the [Process::fd()] method #[derive(Clone)] pub struct FDInfo { /// The file descriptor pub fd: u32, /// The permission bits for this FD /// /// **Note**: this field is only the owner read/write/execute bits. All the other bits /// (include filetype bits) are masked out. See also the `mode()` method. pub mode: u32, pub target: FDTarget, } impl FDInfo { /// Gets the read/write mode of this file descriptor as a bitfield pub fn mode(&self) -> FDPermissions { FDPermissions::from_bits_truncate(self.mode) } } impl std::fmt::Debug for FDInfo { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!( f, "FDInfo {{ fd: {:?}, mode: 0{:o}, target: {:?} }}", self.fd, self.mode, self.target ) } } /// Represents a process in `/proc/<pid>`. /// /// The `stat` structure is pre-populated because it's useful info, but other data is loaded on /// demand (and so might fail, if the process no longer exist). #[derive(Debug, Clone)] pub struct Process { /// The process ID /// /// (same as the `Stat.pid` field). pub pid: i32, /// Process status, based on the `/proc/<pid>/stat` file. pub stat: Stat, /// The user id of the owner of this process pub owner: u32, pub(crate) root: PathBuf, } impl Process { /// Returns a `Process` based on a specified PID. /// /// This can fail if the process doesn't exist, or if you don't have permission to access it. pub fn new(pid: pid_t) -> ProcResult<Process> { let root = PathBuf::from("/proc").join(format!("{}", pid)); Self::new_with_root(root) } /// Returns a `Process` based on a specified `/proc/<pid>` path. pub fn new_with_root(root: PathBuf) -> ProcResult<Process> { let path = root.join("stat"); let stat = Stat::from_reader(FileWrapper::open(&path)?)?; let md = std::fs::metadata(&root)?; Ok(Process { pid: stat.pid, root, stat, owner: md.st_uid(), }) } /// Returns a `Process` for the currently running process. /// /// This is done by using the `/proc/self` symlink pub fn myself() -> ProcResult<Process> { let root = PathBuf::from("/proc/self"); Self::new_with_root(root) } /// Returns the complete command line for the process, unless the process is a zombie. /// /// pub fn cmdline(&self) -> ProcResult<Vec<String>> { let mut buf = String::new(); let mut f = FileWrapper::open(self.root.join("cmdline"))?; f.read_to_string(&mut buf)?; Ok(buf .split('\0') .filter_map(|s| { if !s.is_empty() { Some(s.to_string()) } else { None } }) .collect()) } /// Returns the process ID for this process. pub fn pid(&self) -> pid_t { self.stat.pid } /// Is this process still alive? pub fn is_alive(&self) -> bool { match Process::new(self.pid()) { Ok(prc) => { // assume that the command line, uid and starttime don't change during a processes lifetime // additionally, do not consider defunct processes as "alive" // i.e. if they are different, a new process has the same PID as `self` and so `self` is not considered alive prc.stat.comm == self.stat.comm && prc.owner == self.owner && prc.stat.starttime == self.stat.starttime && prc .stat .state() .map(|s| s != ProcState::Zombie) .unwrap_or(false) && self .stat .state() .map(|s| s != ProcState::Zombie) .unwrap_or(false) } _ => false, } } /// Retrieves current working directory of the process by dereferencing `/proc/<pid>/cwd` symbolic link. /// /// This method has the following caveats: /// /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)" /// appended to the original pathname /// /// * in a multithreaded process, the contents of this symbolic link are not available if the /// main thread has already terminated (typically by calling `pthread_exit(3)`) /// /// * permission to dereference or read this symbolic link is governed by a /// `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check pub fn cwd(&self) -> ProcResult<PathBuf> { Ok(std::fs::read_link(self.root.join("cwd"))?) } /// Retrieves current root directory of the process by dereferencing `/proc/<pid>/root` symbolic link. /// /// This method has the following caveats: /// /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)" /// appended to the original pathname /// /// * in a multithreaded process, the contents of this symbolic link are not available if the /// main thread has already terminated (typically by calling `pthread_exit(3)`) /// /// * permission to dereference or read this symbolic link is governed by a /// `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check pub fn root(&self) -> ProcResult<PathBuf> { Ok(std::fs::read_link(self.root.join("root"))?) } /// Gets the current environment for the process. This is done by reading the /// `/proc/pid/environ` file. pub fn environ(&self) -> ProcResult<HashMap<OsString, OsString>> { use std::ffi::OsStr; use std::os::unix::ffi::OsStrExt; let mut map = HashMap::new(); let mut file = FileWrapper::open(self.root.join("environ"))?; let mut buf = Vec::new(); file.read_to_end(&mut buf)?; for slice in buf.split(|b| *b == 0) { // slice will be in the form key=var, so split on the first equals sign let mut split = slice.splitn(2, |b| *b == b'='); if let (Some(k), Some(v)) = (split.next(), split.next()) { map.insert( OsStr::from_bytes(k).to_os_string(), OsStr::from_bytes(v).to_os_string(), ); }; //let env = OsStr::from_bytes(slice); } Ok(map) } /// Retrieves the actual path of the executed command by dereferencing `/proc/<pid>/exe` symbolic link. /// /// This method has the following caveats: /// /// * if the pathname has been unlinked, the symbolic link will contain the string " (deleted)" /// appended to the original pathname /// /// * in a multithreaded process, the contents of this symbolic link are not available if the /// main thread has already terminated (typically by calling `pthread_exit(3)`) /// /// * permission to dereference or read this symbolic link is governed by a /// `ptrace(2)` access mode `PTRACE_MODE_READ_FSCREDS` check pub fn exe(&self) -> ProcResult<PathBuf> { Ok(std::fs::read_link(self.root.join("exe"))?) } /// Return the Io stats for this process, based on the `/proc/pid/io` file. /// /// (since kernel 2.6.20) pub fn io(&self) -> ProcResult<Io> { let path = self.root.join("io"); let file = FileWrapper::open(&path)?; Io::from_reader(file) } /// Return a list of the currently mapped memory regions and their access permissions, based on /// the `/proc/pid/maps` file. pub fn maps(&self) -> ProcResult<Vec<MemoryMap>> { pub(crate) fn from_line(line: &str) -> ProcResult<MemoryMap> { let mut s = line.splitn(6, ' '); let address = expect!(s.next()); let perms = expect!(s.next()); let offset = expect!(s.next()); let dev = expect!(s.next()); let inode = expect!(s.next()); let path = expect!(s.next()); Ok(MemoryMap { address: split_into_num(address, '-', 16)?, perms: perms.to_string(), offset: from_str!(u64, offset, 16), dev: split_into_num(dev, ':', 16)?, inode: from_str!(u64, inode), pathname: MMapPath::from(path)?, }) } let path = self.root.join("maps"); let file = FileWrapper::open(&path)?; let reader = BufReader::new(file); let mut vec = Vec::new(); for line in reader.lines() { let line = line.map_err(|_| ProcError::Incomplete(Some(path.clone())))?; vec.push(from_line(&line)?); } Ok(vec) } /// Gets a list of open file descriptors for a process pub fn fd(&self) -> ProcResult<Vec<FDInfo>> { use std::ffi::OsStr; use std::fs::read_link; let mut vec = Vec::new(); let path = self.root.join("fd"); for dir in wrap_io_error!(path, path.read_dir())? { let entry = dir?; let file_name = entry.file_name(); let fd = from_str!(u32, expect!(file_name.to_str()), 10); // note: the link might have disappeared between the time we got the directory listing // and now. So if the read_link or metadata fails, that's OK if let (Ok(link), Ok(md)) = (read_link(entry.path()), entry.metadata()) { let link_os: &OsStr = link.as_ref(); vec.push(FDInfo { fd, mode: md.st_mode() & libc::S_IRWXU, target: expect!(FDTarget::from_str(expect!(link_os.to_str()))), }); } } Ok(vec) } /// Lists which memory segments are written to the core dump in the event that a core dump is performed. /// /// By default, the following bits are set: /// 0, 1, 4 (if the CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS kernel configuration option is enabled), and 5. /// This default can be modified at boot time using the core dump_filter boot option. /// /// This function will return `Err(ProcError::NotFound)` if the `coredump_filter` file can't be /// found. If it returns `Ok(None)` then the process has no coredump_filter pub fn coredump_filter(&self) -> ProcResult<Option<CoredumpFlags>> { let mut file = FileWrapper::open(self.root.join("coredump_filter"))?; let mut s = String::new(); file.read_to_string(&mut s)?; if s.trim().is_empty() { return Ok(None); } let flags = from_str!(u32, &s.trim(), 16, pid:self.stat.pid); Ok(Some(expect!(CoredumpFlags::from_bits(flags)))) } /// Gets the process's autogroup membership /// /// (since Linux 2.6.38 and requires CONFIG_SCHED_AUTOGROUP) pub fn autogroup(&self) -> ProcResult<String> { let mut s = String::new(); let mut file = FileWrapper::open(self.root.join("autogroup"))?; file.read_to_string(&mut s)?; Ok(s) } /// Get the process's auxiliary vector /// /// (since 2.6.0-test7) pub fn auxv(&self) -> ProcResult<HashMap<u32, u32>> { use byteorder::{NativeEndian, ReadBytesExt}; let mut file = FileWrapper::open(self.root.join("auxv"))?; let mut map = HashMap::new(); let mut buf = Vec::new(); let bytes_read = file.read_to_end(&mut buf)?; if bytes_read == 0 { // some kernel processes won't have any data for their auxv file return Ok(map); } buf.truncate(bytes_read); let mut file = std::io::Cursor::new(buf); loop { let key = file.read_u32::<NativeEndian>()?; let value = file.read_u32::<NativeEndian>()?; if key == 0 && value == 0 { break; } map.insert(key, value); } Ok(map) } /// Gets the symbolic name corresponding to the location in the kernel where the process is sleeping. /// /// (since Linux 2.6.0) pub fn wchan(&self) -> ProcResult<String> { let mut s = String::new(); let mut file = FileWrapper::open(self.root.join("wchan"))?; file.read_to_string(&mut s)?; Ok(s) } /// Return the `Status` for this process, based on the `/proc/[pid]/status` file. pub fn status(&self) -> ProcResult<Status> { let path = self.root.join("status"); let file = FileWrapper::open(&path)?; Status::from_reader(file) } /// Returns the status info from `/proc/[pid]/stat`. /// /// Note that this data comes pre-loaded in the `stat` field. This method is useful when you /// get the latest status data (since some of it changes while the program is running) pub fn stat(&self) -> ProcResult<Stat> { let path = self.root.join("stat"); let stat = Stat::from_reader(FileWrapper::open(&path)?)?; Ok(stat) } /// Gets the process' login uid. May not be available. pub fn loginuid(&self) -> ProcResult<u32> { let mut uid = String::new(); let path = self.root.join("loginuid"); let mut file = FileWrapper::open(&path)?; file.read_to_string(&mut uid)?; Status::parse_uid_gid(&uid, 0) } /// The current score that the kernel gives to this process for the purpose of selecting a /// process for the OOM-killer /// /// A higher score means that the process is more likely to be selected by the OOM-killer. /// The basis for this score is the amount of memory used by the process, plus other factors. /// /// (Since linux 2.6.11) pub fn oom_score(&self) -> ProcResult<u32> { let path = self.root.join("oom_score"); let mut file = FileWrapper::open(&path)?; let mut oom = String::new(); file.read_to_string(&mut oom)?; Ok(from_str!(u32, oom.trim())) } /// Set process memory information /// /// Much of this data is the same as the data from `stat()` and `status()` pub fn statm(&self) -> ProcResult<StatM> { let path = self.root.join("statm"); let file = FileWrapper::open(&path)?; StatM::from_reader(file) } } /// Return a list of all processes /// /// If a process can't be constructed for some reason, it won't be returned in the list. pub fn all_processes() -> ProcResult<Vec<Process>> { let mut v = Vec::new(); for dir in expect!(std::fs::read_dir("/proc/"), "No /proc/ directory") { if let Ok(entry) = dir { if let Ok(pid) = i32::from_str(&entry.file_name().to_string_lossy()) { match Process::new(pid) { Ok(prc) => v.push(prc), Err(ProcError::InternalError(e)) => return Err(ProcError::InternalError(e)), _ => {} } } } } Ok(v) } /// Provides information about memory usage, measured in pages. #[derive(Debug, Clone, Copy)] pub struct StatM { /// Total program size, measured in pages /// /// (same as VmSize in /proc/<pid>/status) pub size: u64, /// Resident set size, measured in pages /// /// (same as VmRSS in /proc/<pid>/status) pub resident: u64, /// number of resident shared pages (i.e., backed by a file) /// /// (same as RssFile+RssShmem in /proc/<pid>/status) pub shared: u64, /// Text (code) pub text: u64, /// library (unused since Linux 2.6; always 0) pub lib: u64, /// data + stack pub data: u64, /// dirty pages (unused since Linux 2.6; always 0) pub dt: u64, } impl StatM { fn from_reader<R: io::Read>(mut r: R) -> ProcResult<StatM> { let mut line = String::new(); r.read_to_string(&mut line)?; let mut s = line.split_whitespace(); let size = expect!(from_iter(&mut s)); let resident = expect!(from_iter(&mut s)); let shared = expect!(from_iter(&mut s)); let text = expect!(from_iter(&mut s)); let lib = expect!(from_iter(&mut s)); let data = expect!(from_iter(&mut s)); let dt = expect!(from_iter(&mut s)); if cfg!(test) { assert!(s.next().is_none()); } Ok(StatM { size, resident, shared, text, lib, data, dt, }) } } #[cfg(test)] mod tests;