Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// Copyright 2018 TiKV Project Authors. Licensed under Apache-2.0.

use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Instant;

use libc::{getpid, pid_t};

use crate::server::load_statistics::ThreadLoad;
use tikv_util::metrics::{cpu_total, get_thread_ids};

use procinfo::pid;

/// A Linux-specific `ThreadLoadStatistics`. It collects threads load metrics.
pub struct ThreadLoadStatistics {
    pid: pid_t,
    tids: Vec<pid_t>,
    slots: usize,
    cur_pos: usize,
    cpu_usages: Vec<f64>,
    instants: Vec<Instant>,
    thread_load: Arc<ThreadLoad>,
}

impl ThreadLoadStatistics {
    /// Create a thread load statistics for all threads with `prefix`. `ThreadLoad` is stored into
    /// `thread_load`. At most `slots` old records will be kept, to make the curve more smooth.
    ///
    /// Note: call this after the target threads are initialized, otherwise it can't catch them.
    pub fn new(slots: usize, prefix: &str, thread_load: Arc<ThreadLoad>) -> Self {
        let pid: pid_t = unsafe { getpid() };
        let mut tids = vec![];
        let mut cpu_total_count = 0f64;
        for tid in get_thread_ids(pid).unwrap() {
            if let Ok(stat) = pid::stat_task(pid, tid) {
                if !stat.command.starts_with(prefix) {
                    continue;
                }
                cpu_total_count += cpu_total(&stat);
                tids.push(tid);
            }
        }
        ThreadLoadStatistics {
            pid,
            tids,
            slots,
            cur_pos: 0,
            cpu_usages: vec![cpu_total_count; slots],
            instants: vec![Instant::now(); slots],
            thread_load,
        }
    }

    /// For every threads with the name prefix given in `ThreadLoadStatistics::new`,
    /// gather cpu usage from `/proc/<pid>/task/<tid>` and store it in `thread_load`
    /// passed in `ThreadLoadStatistics::new`.
    ///
    /// Some old usages and instants (at most `slots`) will be kept internal to make
    /// the usage curve more smooth.
    pub fn record(&mut self, instant: Instant) {
        self.instants[self.cur_pos] = instant;
        self.cpu_usages[self.cur_pos] = 0f64;
        for tid in &self.tids {
            // TODO: if monitored threads exited and restarted then, we should update `self.tids`.
            if let Ok(stat) = pid::stat_task(self.pid, *tid) {
                self.cpu_usages[self.cur_pos] += cpu_total(&stat);
            }
        }
        let current_instant = self.instants[self.cur_pos];
        let current_cpu_usage = self.cpu_usages[self.cur_pos];

        let next_pos = (self.cur_pos + 1) % self.slots;
        let earlist_instant = self.instants[next_pos];
        let earlist_cpu_usage = self.cpu_usages[next_pos];
        self.cur_pos = next_pos;

        let millis = (current_instant - earlist_instant).as_millis() as usize;
        if millis > 0 {
            let mut cpu_usage = calc_cpu_load(millis, earlist_cpu_usage, current_cpu_usage);
            if cpu_usage > self.tids.len() * 100 {
                cpu_usage = self.tids.len() * 100;
            }
            self.thread_load.load.store(cpu_usage, Ordering::Relaxed);
            self.thread_load.term.fetch_add(1, Ordering::Relaxed);
        }
    }
}

#[inline]
fn calc_cpu_load(elapsed_millis: usize, start_usage: f64, end_usage: f64) -> usize {
    // Multiply by 1000 for millis, and multiply 100 for percentage.
    let cpu_usage = (end_usage - start_usage) * 1000f64 * 100f64;
    cpu_usage as usize / elapsed_millis
}

#[cfg(test)]
mod tests {
    use std::thread;

    use super::*;

    #[test]
    // FIXME(#4364) Flaky test - on CI gets 0 cpu usages, but passes locally.
    #[ignore]
    fn test_thread_load_statistic() {
        // OS thread name is truncated to 16 bytes, including the last '\0'.
        let t = thread::current();
        let thread_name = t.name().unwrap();
        let end = ::std::cmp::min(thread_name.len(), 15);
        let thread_name = thread_name[..end].to_owned();

        let load = Arc::new(ThreadLoad::with_threshold(80));
        let mut stats = ThreadLoadStatistics::new(2, &thread_name, Arc::clone(&load));
        let start = Instant::now();
        loop {
            if (Instant::now() - start).as_millis() > 200 {
                break;
            }
        }
        stats.record(Instant::now());
        let cpu_usage = load.load();
        assert!(cpu_usage < 100); // There is only 1 thread.
        if cpu_usage < 80 {
            panic!("the load must be heavy than 80, but got {}", cpu_usage);
        }
    }
}