Files
adler32
ahash
aho_corasick
ansi_term
antidote
anyhow
arc_swap
arrayvec
async_speed_limit
async_stream
async_stream_impl
async_trait
atty
aws
backtrace
backtrace_sys
backup
base64
batch_system
bitfield
bitflags
block_buffer
boolinator
bstr
byteorder
bytes
bzip2_sys
cargo_metadata
cdc
cfg_if
chrono
chrono_tz
clap
cloud
codec
collections
concurrency_manager
configuration
configuration_derive
const_fn
const_random
const_random_macro
coprocessor_plugin_api
cpuid_bool
crc32fast
crc64fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
crypto_mac
darling
darling_core
darling_macro
dashmap
debugid
derive_more
digest
dirs
dirs_sys
doc_comment
dtoa
either
encoding_rs
encryption
encryption_export
engine_panic
engine_rocks
engine_test
engine_traits
engine_traits_tests
error_code
error_code_gen
example_plugin
external_storage
external_storage_export
fail
failure
failure_derive
farmhash
file_system
filetime
flate2
fnv
foreign_types
foreign_types_shared
fs2
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
fuzz
fxhash
gcp
generic_array
getrandom
getset
grpcio
grpcio_health
grpcio_sys
h2
heck
hex
hmac
http
http_body
httparse
httpdate
hyper
hyper_openssl
hyper_tls
ident_case
idna
indexmap
inferno
inotify
inotify_sys
instant
into_other
iovec
ipnet
ipnetwork
itertools
itoa
keys
kvproto
lazy_static
lazycell
libc
libflate
libflate_lz77
libloading
librocksdb_sys
libtitan_sys
libz_sys
linked_hash_map
linked_hash_set
lock_api
log
log_wrappers
lz4_sys
match_template
matches
md5
memchr
memmap
memoffset
memory_trace_macros
mime
mime_guess
mio
mio_extras
mio_uds
more_asserts
murmur3
native_tls
net2
nix
nodrop
nom
notify
num
num_complex
num_cpus
num_derive
num_format
num_integer
num_iter
num_rational
num_traits
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ordered_float
panic_hook
parking_lot
parking_lot_core
paste
paste_impl
pd_client
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
pnet_base
pnet_datalink
pnet_sys
pprof
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
procfs
procinfo
profiler
prometheus
prometheus_static_metric
promptly
prost
prost_derive
protobuf
quick_xml
quote
raft
raft_engine
raft_log_engine
raft_proto
raftstore
rand
rand_chacha
rand_core
rand_isaac
rayon
rayon_core
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
resolved_ts
rev_lines
rgb
ring
rle_decode_fast
rocksdb
rusoto_core
rusoto_credential
rusoto_kms
rusoto_s3
rusoto_signature
rusoto_sts
rustc_demangle
rustyline
ryu
safemem
same_file
scopeguard
security
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
serde_with
serde_with_macros
server
sha2
shlex
signal
signal_hook_registry
slab
slog
slog_async
slog_derive
slog_global
slog_json
slog_term
smallvec
snappy_sys
socket2
spin
sst_importer
stable_deref_trait
standback
static_assertions
str_stack
strsim
structopt
structopt_derive
strum
strum_macros
subtle
symbolic_common
symbolic_demangle
syn
syn_mid
synstructure
sysinfo
take_mut
tame_gcs
tame_oauth
tempfile
term
test_backup
test_coprocessor
test_pd
test_raftstore
test_sst_importer
test_storage
test_util
textwrap
thiserror
thiserror_impl
thread_local
tidb_query_aggr
tidb_query_codegen
tidb_query_common
tidb_query_datatype
tidb_query_executors
tidb_query_expr
tikv
coprocessor
coprocessor_v2
import
server
storage
tikv_alloc
tikv_ctl
tikv_jemalloc_ctl
tikv_jemalloc_sys
tikv_jemallocator
tikv_kv
tikv_server
tikv_util
time
time_macros
time_macros_impl
tipb
tipb_helper
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_executor
tokio_macros
tokio_openssl
tokio_timer
tokio_tls
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
twoway
twox_hash
txn_types
typenum
ucd_trie
unchecked_index
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
untrusted
url
utf8parse
uuid
vec_map
vlog
walkdir
want
xml
yatp
zeroize
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
use std::borrow::Cow;
use std::io;
#[cfg(feature = "multithreaded")]
use std::mem;
#[cfg(feature = "multithreaded")]
use std::sync::Arc;

use ahash::AHashMap;
#[cfg(feature = "multithreaded")]
use crossbeam::channel;
#[cfg(feature = "multithreaded")]
use dashmap::DashMap;
use lazy_static::lazy_static;

macro_rules! invalid_data_error {
    ($($arg:tt)*) => {{
        Err(io::Error::new(
            io::ErrorKind::InvalidData,
            format!($($arg)*),
        ))
    }};
}

const CAPACITY_HASHMAP: usize = 512;

pub(crate) const CAPACITY_READER: usize = 128 * 1024;

/// Internal parameter (not exposed to users) that determines how many stacks of
/// input data make up a "chunk" (unit that is sent to the threadpool for
/// processing). Chosen by benchmarking various values using the following tests:
/// * cargo test bench_nstacks_dtrace --release -- --ignored --nocapture
/// * cargo test bench_nstacks_perf --release -- --ignored --nocapture
pub(crate) const DEFAULT_NSTACKS_PER_JOB: usize = 100;

/// A guess at the number of bytes contained in any given stack of any given format.
/// Used to calculate the initial capacity of the vector used for sending input
/// data across threads.
#[cfg(feature = "multithreaded")]
const NBYTES_PER_STACK_GUESS: usize = 1024;

const RUST_HASH_LENGTH: usize = 17;

#[cfg(feature = "multithreaded")]
lazy_static! {
    #[doc(hidden)]
    pub static ref DEFAULT_NTHREADS: usize = num_cpus::get();
}

#[cfg(not(feature = "multithreaded"))]
lazy_static! {
    #[doc(hidden)]
    pub static ref DEFAULT_NTHREADS: usize = 1;
}

/// Private trait for internal library authors.
///
/// If you implement this trait, your type will implement the public-facing
/// `Collapse` trait as well. Implementing this trait gives you parallelism
/// for free as long as you adhere to the requirements described in the
/// comments below.
pub trait CollapsePrivate: Send + Sized {
    // *********************************************************** //
    // ********************* REQUIRED METHODS ******************** //
    // *********************************************************** //

    /// Process any header lines that precede the main body of samples.
    ///
    /// Some formats, such as `dtrace`, contain a header or other non-stack
    /// information at the beginning of their input files. If header information
    /// is present, this method **must** consume it (i.e. advance the provided
    /// reader past it).
    ///
    /// This method also provides an opportunity to do processing of actual
    /// stack data on the main thread before worker threads are spun up. For
    /// example, `perf` requires reading the first stack in order to know how to
    /// process the rest; so this method is used for that "upfront" processing.
    ///
    /// If the format you are working with does not contain header information
    /// or does not need any special, up-front processing, just have this method
    /// return `Ok(())` immediately.
    fn pre_process<R>(&mut self, reader: &mut R, occurrences: &mut Occurrences) -> io::Result<()>
    where
        R: io::BufRead;

    /// Process all samples in a chunk of input (the primary method).
    ///
    /// This method receives a reader whose header has already been consumed (see above),
    /// as well as a mutable reference to an `Occurences` instance (just a hashamp that
    /// works across multiple threads). Implementators should parse the stack data
    /// contained in the reader and write output to the provided `Occurrences` map.
    ///
    /// This method may be called multiple times to process batches of incoming samples.
    /// Therefore, make sure that when end-of-file is reached, the collapser now considers
    /// itself back at the top-level context (e.g., not in the middle of a stack). This
    /// means that some internal state, e.g. stack buffers, must be reset by the time this
    /// method returns. Other internal state, e.g. caches, however, may be kept.
    fn collapse_single_threaded<R>(
        &mut self,
        reader: R,
        occurrences: &mut Occurrences,
    ) -> io::Result<()>
    where
        R: io::BufRead;

    /// Determine the end of a stack.
    ///
    /// Worker threads **must** receive full stacks (as opposed to partial stacks); so this method
    /// determines, for your specific format, when the end of a stack has been reached.
    ///
    /// This method should return `true` if the provided line represents the end of a stack;
    /// `false` otherwise.
    ///
    /// If your format requires more information than merely a line of the input data in order
    /// to determine whether or not you are at the end of a stack, you can retreive/store
    /// information on the `self` instance, which is also available to you in this method. This
    /// method will be called for every line of input data (excluding those consumed by the
    /// `pre_process` method).
    fn would_end_stack(&mut self, line: &[u8]) -> bool;

    /// Creates a copy and prepares it to be sent to a different thread.
    ///
    /// This method creates a copy of `self` in order to send it to a different thread.
    /// As such, it should clone all the internal fields of `self` **except** those that
    /// should be reset because the collapser will now operate in a different stack context.
    /// For example, any options should be cloned, but any stack buffers or similar "stack state"
    /// should be reset to, for example, an empty vector before this method returns.
    fn clone_and_reset_stack_context(&self) -> Self;

    /// Determine if this format corresponds to the input data.
    ///
    /// This method, used by the `guess` collapser, should return whether or not the
    /// implementation corresponds with the given input string, i.e. if the input data
    /// matches the collapser.
    ///
    /// - `None` means "not sure -- need more input"
    /// - `Some(true)` means "yes, this implementation should work with this string"
    /// - `Some(false)` means "no, this implementation definitely won't work"
    fn is_applicable(&mut self, input: &str) -> Option<bool>;

    /// Returns the number of stacks per job to send to the threadpool.
    fn nstacks_per_job(&self) -> usize;

    /// Sets the number of stacks per job to send to the threadpool.
    fn set_nstacks_per_job(&mut self, n: usize);

    /// Returns the number of threads to use.
    fn nthreads(&self) -> usize;

    /// Sets the number of threads to use.
    fn set_nthreads(&mut self, n: usize);

    // *********************************************************** //
    // ******************** PROVIDED METHODS ********************* //
    // *********************************************************** //

    fn collapse<R, W>(&mut self, mut reader: R, writer: W) -> io::Result<()>
    where
        R: io::BufRead,
        W: io::Write,
    {
        let mut occurrences = Occurrences::new(self.nthreads());

        // Consume the header, if any, and do any other pre-processing
        // that needs to occur.
        self.pre_process(&mut reader, &mut occurrences)?;

        // Do collapsing.
        if occurrences.is_concurrent() {
            self.collapse_multi_threaded(reader, &mut occurrences)?;
        } else {
            self.collapse_single_threaded(reader, &mut occurrences)?;
        }

        // Write results.
        occurrences.write_and_clear(writer)
    }

    #[cfg(not(feature = "multithreaded"))]
    fn collapse_multi_threaded<R>(&mut self, _: R, _: &mut Occurrences) -> io::Result<()>
    where
        R: io::BufRead,
    {
        unimplemented!();
    }

    #[cfg(feature = "multithreaded")]
    fn collapse_multi_threaded<R>(
        &mut self,
        mut reader: R,
        occurrences: &mut Occurrences,
    ) -> io::Result<()>
    where
        R: io::BufRead,
    {
        let nstacks_per_job = self.nstacks_per_job();
        let nthreads = self.nthreads();

        assert_ne!(nstacks_per_job, 0);
        assert!(nthreads > 1);
        assert!(occurrences.is_concurrent());

        crossbeam::thread::scope(|scope| {
            // Channel for sending an error from the worker threads to the main thread
            // in the event a worker has failed.
            let (tx_error, rx_error) = channel::bounded::<io::Error>(1);

            // Channel for sending input data from the main thread to the worker threads.
            // We choose `2 * nthreads` as the channel size here in order to limit memory
            // usage in the case of particularly large input files.
            let (tx_input, rx_input) = channel::bounded::<Vec<u8>>(2 * nthreads);

            // Channel for worker threads that have errored to signal to all the other
            // worker threads that they should stop work immediately and return.
            let (tx_stop, rx_stop) = channel::bounded::<()>(nthreads - 1);

            let mut handles = Vec::with_capacity(nthreads);
            for _ in 0..nthreads {
                let tx_error = tx_error.clone();
                let rx_input = rx_input.clone();
                let (tx_stop, rx_stop) = (tx_stop.clone(), rx_stop.clone());

                let mut folder = self.clone_and_reset_stack_context();
                let mut occurrences = occurrences.clone();

                // Launch the worker thread...
                // TODO: https://github.com/crossbeam-rs/crossbeam/issues/404
                #[allow(clippy::drop_copy, clippy::zero_ptr)]
                let handle = scope.spawn(move |_| loop {
                    channel::select! {
                        recv(rx_input) -> input => {
                            // Receive input from the main thread.
                            let data = match input {
                                Ok(data) => data,
                                // The main threads drops it's handle to the input sender once it's
                                // finished sending data; so if we get an error here, it means
                                // there is no more data to be sent and we should exit.
                                Err(_) => return,
                            };
                            // If there is input data, process it.
                            if let Err(e) = folder.collapse_single_threaded(&data[..], &mut occurrences) {
                                // In the event of an error...
                                //
                                // We notify all the threads about it here, rather than wait for the main input
                                // loop to see the error, so that we can also stop the input loop from iterating
                                // through the rest of the file.
                                //
                                // If the channel is full, it means another thread has also errored
                                // and already sent a stop signal to the other threads; so there is
                                // no need to wait or to check for a `SendError` here.
                                for _ in 0..(nthreads - 1) {
                                    let _ = tx_stop.try_send(());
                                }

                                // Then, send the error produced to the main thread for
                                // propagation. If the channel is full, it means another thread
                                // has also errored and already sent its error back to the
                                // main thread; so there is no need to wait or to check for a
                                // `SendError` here.
                                let _ = tx_error.try_send(e);

                                // Finally, return.
                                return;
                            }
                            // If successful, return to the top of the loop and continue to poll
                            // the input and stop channels.
                        },
                        recv(rx_stop) -> _ => {
                            // Received a signal from another worker thread that it has errored;
                            // so should cease work immediately and return.
                            return;
                        },
                    }
                });
                handles.push(handle);
            }

            // On the main thread, we're about to start sending data to the worker threads,
            // but we only want to send data to the worker threads **if** they're still alive!
            // (if one of them produces an error, all of them will exit early). To ensure we don't try
            // to send data to dead worker threads, drop the main thread's handle to the input receiver
            // here. This way, if all the workers die, every handle to the input receiver will have
            // been dropped and we'll get an error when trying to send data on the input sender,
            // which will tell us (the main thread) to stop trying to send data and, instead,
            // skip to trying to pull an error off the error channel.
            drop(rx_input);

            // Now that we've dropped the main thread's handle to the input sender, start
            // trying to send data to the worker threads...

            let buf_capacity = usize::next_power_of_two(NBYTES_PER_STACK_GUESS * nstacks_per_job);
            let mut buf = Vec::with_capacity(buf_capacity);
            let (mut index, mut nstacks) = (0, 0);

            loop {
                let n = reader.read_until(b'\n', &mut buf)?;
                if n == 0 {
                    // If we've reached the end of the data, send the final chunk to the worker
                    // threads and break from the loop, The worker threads may or may not still
                    // be alive (depending on if one errored in between the sending of the last
                    // chunk and the sending of this one), but either way we should break the loop;
                    // so there's no need to check for a `SendError` here.
                    let _ = tx_input.send(buf);
                    break;
                }
                let line = &buf[index..index + n];
                index += n;
                if self.would_end_stack(line) {
                    // If we've reached the end of a stack, count it.
                    nstacks += 1;
                    if nstacks == nstacks_per_job {
                        // If we've accumulated enough stacks to make up a chunk to send to the
                        // worker threads, try to send it.
                        let buf_capacity = usize::next_power_of_two(buf.capacity());
                        let chunk = mem::replace(&mut buf, Vec::with_capacity(buf_capacity));
                        if tx_input.send(chunk).is_err() {
                            // If sending the chunk produces a `SendError`, this means that one
                            // of the worker threads has errored, sent a signal to all the other
                            // worker threads to shut down, and they have all shutdown, in which
                            // case we know there will be an error waiting for us on the error
                            // channel; so we should stop parsing input data (i.e. break).
                            break;
                        }
                        index = 0;
                        nstacks = 0;
                    }
                    continue
                }
            }

            // The main thread needs to drop its handle to the input sender here because
            // that's how we signal to the worker threads that there is no more data coming
            // on the input channel, in which case they should exit.
            drop(tx_input);

            // The main thread needs to drop its handle to the error sender here because we
            // are about to poll the error receiver for errors, which will block until all
            // the error senders have been dropped (including ours).
            drop(tx_error);

            // Now we poll the error channel, which will block until either:
            // * all work has been completely successfully,
            //   in which case the expression below will evaluate to `None`, or
            // * an error has occurred on one of the worker theads,
            //   in which case the expression below will evaluate to `Some(<io::Error>)`.
            if let Some(e) = rx_error.iter().next() {
                return Err(e);
            }

            for handle in handles {
                handle.join().unwrap();
            }

            Ok(())
        })
        .unwrap()
    }
}

/// Occurrences is a HashMap, which uses:
/// * AHashMap if single-threaded
/// * DashMap if multi-threaded
#[derive(Clone, Debug)]
pub enum Occurrences {
    SingleThreaded(AHashMap<String, usize>),
    #[cfg(feature = "multithreaded")]
    MultiThreaded(Arc<DashMap<String, usize, ahash::RandomState>>),
}

impl Occurrences {
    #[cfg(feature = "multithreaded")]
    pub(crate) fn new(nthreads: usize) -> Self {
        assert_ne!(nthreads, 0);
        if nthreads == 1 {
            Self::new_single_threaded()
        } else {
            Self::new_multi_threaded()
        }
    }

    #[cfg(not(feature = "multithreaded"))]
    pub(crate) fn new(nthreads: usize) -> Self {
        assert_ne!(nthreads, 0);
        Self::new_single_threaded()
    }

    fn new_single_threaded() -> Self {
        let map =
            AHashMap::with_capacity_and_hasher(CAPACITY_HASHMAP, ahash::RandomState::default());
        Occurrences::SingleThreaded(map)
    }

    #[cfg(feature = "multithreaded")]
    fn new_multi_threaded() -> Self {
        let map =
            DashMap::with_capacity_and_hasher(CAPACITY_HASHMAP, ahash::RandomState::default());
        Occurrences::MultiThreaded(Arc::new(map))
    }

    /// Inserts a key-count pair into the map. If the map did not have this key
    /// present, `None` is returned. If the map did have this key present, the
    /// value is updated, and the old value is returned.
    pub(crate) fn insert(&mut self, key: String, count: usize) -> Option<usize> {
        use self::Occurrences::*;
        match self {
            SingleThreaded(map) => map.insert(key, count),
            #[cfg(feature = "multithreaded")]
            MultiThreaded(arc) => arc.insert(key, count),
        }
    }

    /// Inserts a key-count pair into the map if the key does not already exist.
    /// If the key does already exist, adds count to the current value of the
    /// existing key.
    pub(crate) fn insert_or_add(&mut self, key: String, count: usize) {
        use self::Occurrences::*;
        match self {
            SingleThreaded(map) => *map.entry(key).or_insert(0) += count,
            #[cfg(feature = "multithreaded")]
            MultiThreaded(arc) => *arc.entry(key).or_insert(0) += count,
        }
    }

    pub(crate) fn is_concurrent(&self) -> bool {
        use self::Occurrences::*;
        match self {
            SingleThreaded(_) => false,
            #[cfg(feature = "multithreaded")]
            MultiThreaded(_) => true,
        }
    }

    pub(crate) fn write_and_clear<W>(&mut self, mut writer: W) -> io::Result<()>
    where
        W: io::Write,
    {
        use self::Occurrences::*;
        match self {
            SingleThreaded(ref mut map) => {
                let mut contents: Vec<_> = map.drain().collect();
                contents.sort();
                for (key, value) in contents {
                    writeln!(writer, "{} {}", key, value)?;
                }
            }
            #[cfg(feature = "multithreaded")]
            MultiThreaded(ref mut arc) => {
                let map = match Arc::get_mut(arc) {
                    Some(map) => map,
                    None => panic!(
                        "Attempting to drain the contents of a concurrent HashMap \
                         when more than one thread has access to it, which is \
                         not allowed."
                    ),
                };
                let map = mem::replace(
                    map,
                    DashMap::with_capacity_and_hasher(
                        CAPACITY_HASHMAP,
                        ahash::RandomState::default(),
                    ),
                );
                let contents = map.iter().collect::<Vec<_>>();
                let mut pairs = contents.iter().map(|pair| pair.pair()).collect::<Vec<_>>();
                pairs.sort();
                for (key, value) in pairs {
                    writeln!(writer, "{} {}", key, value)?;
                }
            }
        }
        Ok(())
    }
}

/// Demangles partially demangled Rust symbols that were demangled incorrectly by profilers like
/// `sample` and `DTrace`.
///
/// For example:
///     `_$LT$grep_searcher..searcher..glue..ReadByLine$LT$$u27$s$C$$u20$M$C$$u20$R$C$$u20$S$GT$$GT$::run::h30ecedc997ad7e32`
/// becomes
///     `<grep_searcher::searcher::glue::ReadByLine<'s, M, R, S>>::run`
///
/// Non-Rust symobols, or Rust symbols that are already demangled, will be returned unchanged.
///
/// Based on code in https://github.com/alexcrichton/rustc-demangle/blob/master/src/legacy.rs
#[allow(clippy::cognitive_complexity)]
pub(crate) fn fix_partially_demangled_rust_symbol(symbol: &str) -> Cow<str> {
    // Rust hashes are hex digits with an `h` prepended.
    let is_rust_hash = |s: &str| s.starts_with('h') && s[1..].chars().all(|c| c.is_digit(16));

    // If there's no trailing Rust hash just return the symbol as is.
    if symbol.len() < RUST_HASH_LENGTH || !is_rust_hash(&symbol[symbol.len() - RUST_HASH_LENGTH..])
    {
        return Cow::Borrowed(symbol);
    }

    // Strip off trailing hash.
    let mut rest = &symbol[..symbol.len() - RUST_HASH_LENGTH];

    if rest.ends_with("::") {
        rest = &rest[..rest.len() - 2];
    }

    if rest.starts_with("_$") {
        rest = &rest[1..];
    }

    let mut demangled = String::new();

    while !rest.is_empty() {
        if rest.starts_with('.') {
            if let Some('.') = rest[1..].chars().next() {
                demangled.push_str("::");
                rest = &rest[2..];
            } else {
                demangled.push_str(".");
                rest = &rest[1..];
            }
        } else if rest.starts_with('$') {
            macro_rules! demangle {
                ($($pat:expr => $demangled:expr,)*) => ({
                    $(if rest.starts_with($pat) {
                        demangled.push_str($demangled);
                        rest = &rest[$pat.len()..];
                        } else)*
                    {
                        demangled.push_str(rest);
                        break;
                    }

                })
            }

            demangle! {
                "$SP$" => "@",
                "$BP$" => "*",
                "$RF$" => "&",
                "$LT$" => "<",
                "$GT$" => ">",
                "$LP$" => "(",
                "$RP$" => ")",
                "$C$" => ",",
                "$u7e$" => "~",
                "$u20$" => " ",
                "$u27$" => "'",
                "$u3d$" => "=",
                "$u5b$" => "[",
                "$u5d$" => "]",
                "$u7b$" => "{",
                "$u7d$" => "}",
                "$u3b$" => ";",
                "$u2b$" => "+",
                "$u21$" => "!",
                "$u22$" => "\"",
            }
        } else {
            let idx = match rest.char_indices().find(|&(_, c)| c == '$' || c == '.') {
                None => rest.len(),
                Some((i, _)) => i,
            };
            demangled.push_str(&rest[..idx]);
            rest = &rest[idx..];
        }
    }

    Cow::Owned(demangled)
}

#[cfg(test)]
pub(crate) mod testing {
    use std::collections::HashMap;
    use std::fmt;
    use std::fs::File;
    use std::io::Write;
    use std::io::{self, BufRead, Read};
    use std::path::{Path, PathBuf};
    use std::time::{Duration, Instant};

    use libflate::gzip::Decoder;

    use super::*;
    use crate::collapse::Collapse;

    // TODO: Eventually replace with `as_nanos`, which became part of the standard library in Rust 1.33.0.
    pub(crate) trait DurationExt {
        fn as_nanos_compat(&self) -> u128;
    }

    impl DurationExt for Duration {
        fn as_nanos_compat(&self) -> u128 {
            self.as_secs() as u128 * 1_000_000_000 + self.subsec_nanos() as u128
        }
    }

    pub(crate) fn read_inputs<P>(inputs: &[P]) -> io::Result<HashMap<PathBuf, Vec<u8>>>
    where
        P: AsRef<Path>,
    {
        let mut map = HashMap::default();
        for path in inputs.iter() {
            let path = path.as_ref();
            let bytes = {
                let mut buf = Vec::new();
                let mut file = File::open(path)?;
                if path.to_str().unwrap().ends_with(".gz") {
                    let mut reader = Decoder::new(file)?;
                    reader.read_to_end(&mut buf)?;
                } else {
                    file.read_to_end(&mut buf)?;
                }
                buf
            };
            map.insert(path.to_path_buf(), bytes);
        }
        Ok(map)
    }

    pub(crate) fn test_collapse_multi<C, P>(folder: &mut C, inputs: &[P]) -> io::Result<()>
    where
        C: Collapse + CollapsePrivate,
        P: AsRef<Path>,
    {
        const MAX_THREADS: usize = 16;
        for (path, bytes) in read_inputs(inputs)? {
            folder.set_nthreads(1);
            let mut writer = Vec::new();
            <C as Collapse>::collapse(folder, &bytes[..], &mut writer)?;
            let expected = std::str::from_utf8(&writer[..]).unwrap();

            for n in 2..=MAX_THREADS {
                folder.set_nthreads(n);
                let mut writer = Vec::new();
                <C as Collapse>::collapse(folder, &bytes[..], &mut writer)?;
                let actual = std::str::from_utf8(&writer[..]).unwrap();

                assert_eq!(
                    actual,
                    expected,
                    "Collapsing with {} threads does not produce the same output as collapsing with 1 thread for {}",
                    n,
                    path.display()
                );
            }
        }

        Ok(())
    }

    pub(crate) fn bench_nstacks<C, P>(folder: &mut C, inputs: &[P]) -> io::Result<()>
    where
        C: CollapsePrivate,
        P: AsRef<Path>,
    {
        const MIN_LINES: usize = 2000;
        const NSAMPLES: usize = 100;
        const WARMUP_SECS: usize = 3;

        let _stdout = io::stdout();
        let _stderr = io::stdout();

        let mut stdout = _stdout.lock();
        let _stderr = _stderr.lock();

        struct Foo<'a> {
            default: usize,
            nlines: usize,
            nstacks: usize,
            path: &'a Path,
            results: HashMap<usize, u64>,
        }

        impl<'a> Foo<'a> {
            fn new<C>(
                folder: &mut C,
                path: &'a Path,
                bytes: &[u8],
                stdout: &mut io::StdoutLock,
            ) -> io::Result<Option<Self>>
            where
                C: CollapsePrivate,
            {
                let default = folder.nstacks_per_job();

                let (nlines, nstacks) = count_lines_and_stacks(&bytes);
                if nlines < MIN_LINES {
                    return Ok(None);
                }

                let mut results = HashMap::default();
                let iter = vec![default]
                    .into_iter()
                    .chain(1..=10)
                    .chain((20..=nstacks).step_by(10));
                for nstacks_per_job in iter {
                    folder.set_nstacks_per_job(nstacks_per_job);
                    let mut durations = Vec::new();
                    for _ in 0..NSAMPLES {
                        let now = Instant::now();
                        folder.collapse(&bytes[..], io::sink())?;
                        durations.push(now.elapsed().as_nanos_compat());
                    }
                    let avg_duration =
                        (durations.iter().sum::<u128>() as f64 / durations.len() as f64) as u64;
                    results.insert(nstacks_per_job, avg_duration);
                    stdout.write_all(&[b'.'])?;
                    stdout.flush()?;
                }
                Ok(Some(Self {
                    default,
                    nlines,
                    nstacks,
                    path,
                    results,
                }))
            }
        }

        impl<'a> fmt::Display for Foo<'a> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                writeln!(
                    f,
                    "{} (nstacks: {}, lines: {})",
                    self.path.display(),
                    self.nstacks,
                    self.nlines
                )?;
                let default_duration = self.results[&self.default];
                let mut results = self.results.iter().collect::<Vec<_>>();
                results.sort_by(|(_, d1), (_, d2)| (**d1).cmp(*d2));
                for (nstacks_per_job, duration) in results.iter().take(10) {
                    writeln!(
                        f,
                        "    nstacks_per_job: {:>4} (% of total: {:>3.0}%) | time: {:.0}% of default",
                        nstacks_per_job,
                        (**nstacks_per_job as f32 / self.nstacks as f32) * 100.0,
                        **duration as f64 / default_duration as f64 * 100.0,
                    )?;
                }
                writeln!(f)?;
                Ok(())
            }
        }

        fn count_lines_and_stacks(bytes: &[u8]) -> (usize, usize) {
            let mut reader = io::BufReader::new(bytes);
            let mut line = String::new();

            let (mut nlines, mut nstacks) = (0, 0);
            loop {
                line.clear();
                let n = reader.read_line(&mut line).unwrap();
                if n == 0 {
                    nstacks += 1;
                    break;
                }
                nlines += 1;
                if line.trim().is_empty() {
                    nstacks += 1;
                }
            }
            (nlines, nstacks)
        }

        let inputs = read_inputs(inputs)?;

        // Warmup
        let now = Instant::now();
        stdout.write_fmt(format_args!(
            "# Warming up for approximately {} seconds.\n",
            WARMUP_SECS
        ))?;
        stdout.flush()?;
        while now.elapsed() < std::time::Duration::from_secs(WARMUP_SECS as u64) {
            for (_, bytes) in inputs.iter() {
                folder.collapse(&bytes[..], io::sink())?;
            }
        }

        // Time
        let mut foos = Vec::new();
        for (path, bytes) in &inputs {
            stdout.write_fmt(format_args!("# {} ", path.display()))?;
            stdout.flush()?;
            if let Some(foo) = Foo::new(folder, path, bytes, &mut stdout)? {
                foos.push(foo);
            }
            stdout.write_all(&[b'\n'])?;
            stdout.flush()?;
        }
        stdout.write_all(&[b'\n'])?;
        stdout.flush()?;
        foos.sort_by(|a, b| b.nstacks.cmp(&a.nstacks));
        for foo in foos {
            stdout.write_fmt(format_args!("{}", foo))?;
            stdout.flush()?;
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    macro_rules! t {
        ($a:expr, $b:expr) => {
            assert!(ok($a, $b))
        };
    }

    macro_rules! t_unchanged {
        ($a:expr) => {
            assert!(ok_unchanged($a))
        };
    }

    fn ok(sym: &str, expected: &str) -> bool {
        let result = super::fix_partially_demangled_rust_symbol(sym);
        if result == expected {
            true
        } else {
            println!("\n{}\n!=\n{}\n", result, expected);
            false
        }
    }

    fn ok_unchanged(sym: &str) -> bool {
        let result = super::fix_partially_demangled_rust_symbol(sym);
        if result == sym {
            true
        } else {
            println!("{} should have been unchanged, but got {}", sym, result);
            false
        }
    }

    #[test]
    fn fix_partially_demangled_rust_symbols() {
        t!(
            "std::sys::unix::fs::File::open::hb90e1c1c787080f0",
            "std::sys::unix::fs::File::open"
        );
        t!("_$LT$std..fs..ReadDir$u20$as$u20$core..iter..traits..iterator..Iterator$GT$::next::hc14f1750ca79129b", "<std::fs::ReadDir as core::iter::traits::iterator::Iterator>::next");
        t!("rg::search_parallel::_$u7b$$u7b$closure$u7d$$u7d$::_$u7b$$u7b$closure$u7d$$u7d$::h6e849b55a66fcd85", "rg::search_parallel::_{{closure}}::_{{closure}}");
        t!(
            "_$LT$F$u20$as$u20$alloc..boxed..FnBox$LT$A$GT$$GT$::call_box::h8612a2a83552fc2d",
            "<F as alloc::boxed::FnBox<A>>::call_box"
        );
        t!(
            "_$LT$$RF$std..fs..File$u20$as$u20$std..io..Read$GT$::read::h5d84059cf335c8e6",
            "<&std::fs::File as std::io::Read>::read"
        );
        t!(
            "_$LT$std..thread..JoinHandle$LT$T$GT$$GT$::join::hca6aa63e512626da",
            "<std::thread::JoinHandle<T>>::join"
        );
        t!(
            "std::sync::mpsc::shared::Packet$LT$T$GT$::recv::hfde2d9e28d13fd56",
            "std::sync::mpsc::shared::Packet<T>::recv"
        );
        t!("crossbeam_utils::thread::ScopedThreadBuilder::spawn::_$u7b$$u7b$closure$u7d$$u7d$::h8fdc7d4f74c0da05", "crossbeam_utils::thread::ScopedThreadBuilder::spawn::_{{closure}}");
    }

    #[test]
    fn fix_partially_demangled_rust_symbol_on_fully_mangled_symbols() {
        t_unchanged!("_ZN4testE");
        t_unchanged!("_ZN4test1a2bcE");
        t_unchanged!("_ZN7inferno10flamegraph5merge6frames17hacfe2d67301633c2E");
        t_unchanged!("_ZN3std2rt19lang_start_internal17h540c897fe52ba9c5E");
        t_unchanged!("_ZN116_$LT$core..str..pattern..CharSearcher$LT$$u27$a$GT$$u20$as$u20$core..str..pattern..ReverseSearcher$LT$$u27$a$GT$$GT$15next_match_back17h09d544049dd719bbE");
        t_unchanged!("_ZN3std5panic12catch_unwind17h0562757d03ff60b3E");
        t_unchanged!("_ZN3std9panicking3try17h9c1cbc5599e1efbfE");
    }

    #[test]
    fn fix_partially_demangled_rust_symbol_on_fully_demangled_symbols() {
        t_unchanged!("std::sys::unix::fs::File::open");
        t_unchanged!("<F as alloc::boxed::FnBox<A>>::call_box");
        t_unchanged!("<std::fs::ReadDir as core::iter::traits::iterator::Iterator>::next");
        t_unchanged!("<rg::search::SearchWorker<W>>::search_impl");
        t_unchanged!("<grep_searcher::searcher::glue::ReadByLine<'s, M, R, S>>::run");
        t_unchanged!("<alloc::raw_vec::RawVec<T, A>>::reserve_internal");
    }
}