1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
//! Low level AES IGE and key wrapping functionality //! //! AES ECB, CBC, XTS, CTR, CFB, GCM and other conventional symmetric encryption //! modes are found in [`symm`]. This is the implementation of AES IGE and key wrapping //! //! Advanced Encryption Standard (AES) provides symmetric key cipher that //! the same key is used to encrypt and decrypt data. This implementation //! uses 128, 192, or 256 bit keys. This module provides functions to //! create a new key with [`new_encrypt`] and perform an encryption/decryption //! using that key with [`aes_ige`]. //! //! [`new_encrypt`]: struct.AesKey.html#method.new_encrypt //! [`aes_ige`]: fn.aes_ige.html //! //! The [`symm`] module should be used in preference to this module in most cases. //! The IGE block cypher is a non-traditional cipher mode. More traditional AES //! encryption methods are found in the [`Crypter`] and [`Cipher`] structs. //! //! [`symm`]: ../symm/index.html //! [`Crypter`]: ../symm/struct.Crypter.html //! [`Cipher`]: ../symm/struct.Cipher.html //! //! # Examples //! //! ## AES IGE //! ```rust //! use openssl::aes::{AesKey, aes_ige}; //! use openssl::symm::Mode; //! //! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; //! let plaintext = b"\x12\x34\x56\x78\x90\x12\x34\x56\x12\x34\x56\x78\x90\x12\x34\x56"; //! let mut iv = *b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\ //! \x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F"; //! //! let key = AesKey::new_encrypt(key).unwrap(); //! let mut output = [0u8; 16]; //! aes_ige(plaintext, &mut output, &key, &mut iv, Mode::Encrypt); //! assert_eq!(output, *b"\xa6\xad\x97\x4d\x5c\xea\x1d\x36\xd2\xf3\x67\x98\x09\x07\xed\x32"); //! ``` //! //! ## Key wrapping //! ```rust //! use openssl::aes::{AesKey, unwrap_key, wrap_key}; //! //! let kek = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; //! let key_to_wrap = b"\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF"; //! //! let enc_key = AesKey::new_encrypt(kek).unwrap(); //! let mut ciphertext = [0u8; 24]; //! wrap_key(&enc_key, None, &mut ciphertext, &key_to_wrap[..]).unwrap(); //! let dec_key = AesKey::new_decrypt(kek).unwrap(); //! let mut orig_key = [0u8; 16]; //! unwrap_key(&dec_key, None, &mut orig_key, &ciphertext[..]).unwrap(); //! //! assert_eq!(&orig_key[..], &key_to_wrap[..]); //! ``` //! use ffi; use libc::{c_int, c_uint}; use std::{mem, ptr}; use symm::Mode; /// Provides Error handling for parsing keys. #[derive(Debug)] pub struct KeyError(()); /// The key used to encrypt or decrypt cipher blocks. pub struct AesKey(ffi::AES_KEY); impl AesKey { /// Prepares a key for encryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. pub fn new_encrypt(key: &[u8]) -> Result<AesKey, KeyError> { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = mem::uninitialized(); let r = ffi::AES_set_encrypt_key( key.as_ptr() as *const _, key.len() as c_int * 8, &mut aes_key, ); if r == 0 { Ok(AesKey(aes_key)) } else { Err(KeyError(())) } } } /// Prepares a key for decryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. pub fn new_decrypt(key: &[u8]) -> Result<AesKey, KeyError> { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = mem::uninitialized(); let r = ffi::AES_set_decrypt_key( key.as_ptr() as *const _, key.len() as c_int * 8, &mut aes_key, ); if r == 0 { Ok(AesKey(aes_key)) } else { Err(KeyError(())) } } } } /// Performs AES IGE encryption or decryption /// /// AES IGE (Infinite Garble Extension) is a form of AES block cipher utilized in /// OpenSSL. Infinite Garble referes to propogating forward errors. IGE, like other /// block ciphers implemented for AES requires an initalization vector. The IGE mode /// allows a stream of blocks to be encrypted or decrypted without having the entire /// plaintext available. For more information, visit [AES IGE Encryption]. /// /// This block cipher uses 16 byte blocks. The rust implmentation will panic /// if the input or output does not meet this 16-byte boundry. Attention must /// be made in this low level implementation to pad the value to the 128-bit boundry. /// /// [AES IGE Encryption]: http://www.links.org/files/openssl-ige.pdf /// /// # Panics /// /// Panics if `in_` is not the same length as `out`, if that length is not a multiple of 16, or if /// `iv` is not at least 32 bytes. pub fn aes_ige(in_: &[u8], out: &mut [u8], key: &AesKey, iv: &mut [u8], mode: Mode) { unsafe { assert!(in_.len() == out.len()); assert!(in_.len() % ffi::AES_BLOCK_SIZE as usize == 0); assert!(iv.len() >= ffi::AES_BLOCK_SIZE as usize * 2); let mode = match mode { Mode::Encrypt => ffi::AES_ENCRYPT, Mode::Decrypt => ffi::AES_DECRYPT, }; ffi::AES_ige_encrypt( in_.as_ptr() as *const _, out.as_mut_ptr() as *mut _, in_.len(), &key.0, iv.as_mut_ptr() as *mut _, mode, ); } } /// Wrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394) /// /// * `key`: The key-encrypting-key to use. Must be a encrypting key /// * `iv`: The IV to use. You must use the same IV for both wrapping and unwrapping /// * `out`: The output buffer to store the ciphertext /// * `in_`: The input buffer, storing the key to be wrapped /// /// Returns the number of bytes written into `out` /// /// # Panics /// /// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or if /// `out` is not 8 bytes longer than `in_` pub fn wrap_key( key: &AesKey, iv: Option<[u8; 8]>, out: &mut [u8], in_: &[u8], ) -> Result<usize, KeyError> { unsafe { assert!(out.len() >= in_.len() + 8); // Ciphertext is 64 bits longer (see 2.2.1) let written = ffi::AES_wrap_key( &key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer. iv.as_ref() .map_or(ptr::null(), |iv| iv.as_ptr() as *const _), out.as_ptr() as *mut _, in_.as_ptr() as *const _, in_.len() as c_uint, ); if written <= 0 { Err(KeyError(())) } else { Ok(written as usize) } } } /// Unwrap a key, according to [RFC 3394](https://tools.ietf.org/html/rfc3394) /// /// * `key`: The key-encrypting-key to decrypt the wrapped key. Must be a decrypting key /// * `iv`: The same IV used for wrapping the key /// * `out`: The buffer to write the unwrapped key to /// * `in_`: The input ciphertext /// /// Returns the number of bytes written into `out` /// /// # Panics /// /// Panics if either `out` or `in_` do not have sizes that are a multiple of 8, or /// if `in` is not 8 bytes longer than `in_` pub fn unwrap_key( key: &AesKey, iv: Option<[u8; 8]>, out: &mut [u8], in_: &[u8], ) -> Result<usize, KeyError> { unsafe { assert!(out.len() + 8 <= in_.len()); let written = ffi::AES_unwrap_key( &key.0 as *const _ as *mut _, // this is safe, the implementation only uses the key as a const pointer. iv.as_ref() .map_or(ptr::null(), |iv| iv.as_ptr() as *const _), out.as_ptr() as *mut _, in_.as_ptr() as *const _, in_.len() as c_uint, ); if written <= 0 { Err(KeyError(())) } else { Ok(written as usize) } } } #[cfg(test)] mod test { use hex::FromHex; use super::*; use symm::Mode; // From https://www.mgp25.com/AESIGE/ #[test] fn ige_vector_1() { let raw_key = "000102030405060708090A0B0C0D0E0F"; let raw_iv = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"; let raw_pt = "0000000000000000000000000000000000000000000000000000000000000000"; let raw_ct = "1A8519A6557BE652E9DA8E43DA4EF4453CF456B4CA488AA383C79C98B34797CB"; let key = AesKey::new_encrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let pt = Vec::from_hex(raw_pt).unwrap(); let ct = Vec::from_hex(raw_ct).unwrap(); let mut ct_actual = vec![0; ct.len()]; aes_ige(&pt, &mut ct_actual, &key, &mut iv, Mode::Encrypt); assert_eq!(ct_actual, ct); let key = AesKey::new_decrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let mut pt_actual = vec![0; pt.len()]; aes_ige(&ct, &mut pt_actual, &key, &mut iv, Mode::Decrypt); assert_eq!(pt_actual, pt); } // from the RFC https://tools.ietf.org/html/rfc3394#section-2.2.3 #[test] fn test_wrap_unwrap() { let raw_key = Vec::from_hex("000102030405060708090A0B0C0D0E0F").unwrap(); let key_data = Vec::from_hex("00112233445566778899AABBCCDDEEFF").unwrap(); let expected_ciphertext = Vec::from_hex("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5").unwrap(); let enc_key = AesKey::new_encrypt(&raw_key).unwrap(); let mut wrapped = [0; 24]; assert_eq!( wrap_key(&enc_key, None, &mut wrapped, &key_data).unwrap(), 24 ); assert_eq!(&wrapped[..], &expected_ciphertext[..]); let dec_key = AesKey::new_decrypt(&raw_key).unwrap(); let mut unwrapped = [0; 16]; assert_eq!( unwrap_key(&dec_key, None, &mut unwrapped, &wrapped).unwrap(), 16 ); assert_eq!(&unwrapped[..], &key_data[..]); } }