1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use super::pixel::*;
use crate::alt::BGR;
use crate::alt::BGRA;
use crate::RGB;
use crate::RGBA;
use core;
use core::fmt;

macro_rules! impl_rgba {
    ($RGBA:ident, $RGB:ident, $BGRA:ident) => {
        impl<T> $RGBA<T> {
            #[inline(always)]
            /// Convenience function for creating a new pixel
            /// The order of arguments is R,G,B,A
            pub const fn new(r: T, g: T, b: T, a: T) -> Self {
                Self { r, g, b, a }
            }
        }

        impl<T, A> $RGBA<T,A> {
            #[inline(always)]
            /// Convenience function for creating a new pixel
            /// The order of arguments is R,G,B,A
            pub const fn new_alpha(r: T, g: T, b: T, a: A) -> Self {
                Self {r,g,b,a}
            }
        }

        impl<T: Clone> $RGBA<T> {
            /// Iterate over all components (length=4)
            #[inline(always)]
            pub fn iter(&self) -> core::iter::Cloned<core::slice::Iter<'_, T>> {
                self.as_slice().iter().cloned()
            }
        }

        impl<T: Clone, A> $RGBA<T, A> {
            /// Copy RGB components out of the RGBA struct
            ///
            /// Note: you can use `.into()` to convert between other types
            #[inline(always)]
            pub fn rgb(&self) -> $RGB<T> {
                $RGB {r:self.r.clone(), g:self.g.clone(), b:self.b.clone()}
            }
        }

        impl<T, A> $RGBA<T, A> {
            /// Provide a mutable view of only RGB components (leaving out alpha).
            /// Useful to change color without changing opacity.
            #[inline(always)]
            pub fn rgb_mut(&mut self) -> &mut $RGB<T> {
                unsafe {
                    core::mem::transmute(self)
                }
            }
        }

        impl<T: Copy, A: Clone> $RGBA<T, A> {
            /// Create new RGBA with the same alpha value, but different RGB values
            #[inline(always)]
            pub fn map_rgb<F, U, B>(&self, f: F) -> $RGBA<U, B>
                where F: FnMut(T) -> U, U: Clone, B: From<A> + Clone
            {
                self.rgb().map(f).new_alpha(self.a.clone().into())
            }

            #[inline(always)]
            /// Create a new RGBA with the new alpha value, but same RGB values
            pub fn alpha(&self, a: A) -> Self {
                Self {
                    r: self.r, g: self.g, b: self.b, a,
                }
            }

            /// Create a new RGBA with a new alpha value created by the callback.
            /// Allows changing of the type used for the alpha channel.
            pub fn map_alpha<F, B>(&self, f: F) -> $RGBA<T, B>
                where F: FnOnce(A) -> B {
                $RGBA {
                    r: self.r,
                    g: self.g,
                    b: self.b,
                    a: f(self.a.clone()),
                }
            }
        }

        impl<T: Copy, B> ComponentMap<$RGBA<B>, T, B> for $RGBA<T> {
            #[inline(always)]
            fn map<F>(&self, mut f: F) -> $RGBA<B>
            where
                F: FnMut(T) -> B,
            {
                $RGBA {
                    r: f(self.r),
                    g: f(self.g),
                    b: f(self.b),
                    a: f(self.a),
                }
            }
        }

        impl<T> ComponentSlice<T> for $RGBA<T> {
            #[inline(always)]
            fn as_slice(&self) -> &[T] {
                unsafe {
                    core::slice::from_raw_parts(self as *const Self as *const T, 4)
                }
            }

            #[inline(always)]
            fn as_mut_slice(&mut self) -> &mut [T] {
                unsafe {
                    core::slice::from_raw_parts_mut(self as *mut Self as *mut T, 4)
                }
            }
        }

        impl<T> ComponentSlice<T> for [$RGBA<T>] {
            #[inline]
            fn as_slice(&self) -> &[T] {
                unsafe {
                    core::slice::from_raw_parts(self.as_ptr() as *const _, self.len() * 4)
                }
            }
            #[inline]
            fn as_mut_slice(&mut self) -> &mut [T] {
                unsafe {
                    core::slice::from_raw_parts_mut(self.as_ptr() as *mut _, self.len() * 4)
                }
            }
        }

        impl<T: Copy + Send + Sync + 'static> ComponentBytes<T> for [$RGBA<T>] {}

        /// Assumes 255 is opaque
        impl<T: Copy> From<$RGB<T>> for $RGBA<T, u8> {
            fn from(other: $RGB<T>) -> Self {
                Self {
                    r: other.r,
                    g: other.g,
                    b: other.b,
                    a: 0xFF,
                }
            }
        }

        /// Assumes 255 is opaque
        impl<T: Copy> From<$RGB<T>> for $BGRA<T, u8> {
            fn from(other: $RGB<T>) -> Self {
                Self {
                    r: other.r,
                    g: other.g,
                    b: other.b,
                    a: 0xFF,
                }
            }
        }

        /// Assumes 65535 is opaque
        impl<T: Copy> From<$RGB<T>> for $RGBA<T, u16> {
            fn from(other: $RGB<T>) -> Self {
                Self {
                    r: other.r,
                    g: other.g,
                    b: other.b,
                    a: 0xFFFF,
                }
            }
        }

        /// Assumes 255 is opaque
        impl<T: Copy> From<$RGB<T>> for $BGRA<T, u16> {
            fn from(other: $RGB<T>) -> Self {
                Self {
                    r: other.r,
                    g: other.g,
                    b: other.b,
                    a: 0xFFFF,
                }
            }
        }
    }
}

impl<T> core::iter::FromIterator<T> for RGBA<T> {
    #[inline(always)]
    /// Takes exactly 4 elements from the iterator and creates a new instance.
    /// Panics if there are fewer elements in the iterator.
    fn from_iter<I: IntoIterator<Item = T>>(into_iter: I) -> Self {
        let mut iter = into_iter.into_iter();
        Self {
            r: iter.next().unwrap(),
            g: iter.next().unwrap(),
            b: iter.next().unwrap(),
            a: iter.next().unwrap(),
        }
    }
}

impl_rgba! {RGBA, RGB, BGRA}
impl_rgba! {BGRA, BGR, RGBA}

impl<T: fmt::Display, A: fmt::Display> fmt::Display for RGBA<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "rgba({},{},{},{})", self.r, self.g, self.b, self.a)
    }
}

impl<T: fmt::Display, A: fmt::Display> fmt::Display for BGRA<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "bgra({},{},{},{})", self.r, self.g, self.b, self.a)
    }
}

#[test]
fn rgba_test() {
    let neg = RGBA::new(1,2,3i32,1000).map(|x| -x);
    assert_eq!(neg.r, -1);
    assert_eq!(neg.rgb().r, -1);
    assert_eq!(neg.g, -2);
    assert_eq!(neg.rgb().g, -2);
    assert_eq!(neg.b, -3);
    assert_eq!(neg.rgb().b, -3);
    assert_eq!(neg.a, -1000);
    assert_eq!(neg.map_alpha(|x| x+1).a, -999);
    assert_eq!(neg, neg.as_slice().iter().cloned().collect());
    assert!(neg < RGBA::new(0,0,0,0));

    let neg = RGBA::new(1u8,2,3,4).map_rgb(|c| -(c as i16));
    assert_eq!(-1i16, neg.r);
    assert_eq!(4i16, neg.a);

    let mut px = RGBA{r:1,g:2,b:3,a:4};
    px.as_mut_slice()[3] = 100;
    assert_eq!(1, px.rgb_mut().r);
    assert_eq!(2, px.rgb_mut().g);
    px.rgb_mut().b = 4;
    assert_eq!(4, px.rgb_mut().b);
    assert_eq!(100, px.a);

    let v = vec![RGBA::new(1u8,2,3,4), RGBA::new(5,6,7,8)];
    assert_eq!(&[1,2,3,4,5,6,7,8], v.as_bytes());
}

#[test]
fn bgra_test() {
    let neg = BGRA::new(1, 2, 3i32, 1000).map(|x| -x);
    assert_eq!(neg.r, -1);
    assert_eq!(neg.rgb().r, -1);
    assert_eq!(neg.g, -2);
    assert_eq!(neg.rgb().g, -2);
    assert_eq!(neg.b, -3);
    assert_eq!(neg.rgb().b, -3);
    assert_eq!(neg.a, -1000);
    assert_eq!(&[-3,-2,-1,-1000], neg.as_slice());
    assert!(neg < BGRA::new(0, 0, 0, 0));

    let neg = BGRA::new(1u8, 2u8, 3u8, 4u8).map_rgb(|c| -(c as i16));
    assert_eq!(-1i16, neg.r);
    assert_eq!(4i16, neg.a);

    let mut px = BGRA{r:1,g:2,b:3,a:-9}.alpha(4);
    px.as_mut_slice()[3] = 100;
    assert_eq!(1, px.rgb_mut().r);
    assert_eq!(2, px.rgb_mut().g);
    px.rgb_mut().b = 4;
    assert_eq!(4, px.rgb_mut().b);
    assert_eq!(100, px.a);

    let v = vec![BGRA::new(3u8, 2, 1, 4), BGRA::new(7, 6, 5, 8)];
    assert_eq!(&[1,2,3,4,5,6,7,8], v.as_bytes());
}